Difference between revisions of "IC Python API:RLPy RVector2"

From Reallusion Wiki!
Jump to: navigation, search
m (SetY)
m
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
{{TOC}}
 
{{TOC}}
 
{{Parent|IC_Python_API:RL_Python_Modules|Modules}}
 
{{Parent|IC_Python_API:RL_Python_Modules|Modules}}
==Description==
+
{{last_modified}}
  
2D Vector math class for float values. This class provides access to RLPy's internal vector math library allowing vectors to be handled effortlessly, and in a manner compatible with internal RLPy data structures.  It also supports operators and vector related functions.
+
== Description ==
  
RVector2 also provides some constants for your convenience:
+
This class represents a 2D vector (x, y). This class provides access to RLPy's internal 2D vector math library allowing 2D vectors to be handled easily, in a manner compatible with internal RLPy data structures. It also supports operators and provides some constants for your convenience:
  
 
{|class = "wikitable"
 
{|class = "wikitable"
Line 12: Line 12:
 
|-
 
|-
 
|RVector2.ZERO
 
|RVector2.ZERO
|2D zero vector: (0, 0)
+
|2D zero vector2: (0, 0)
 
|-
 
|-
 
|RVector2.UNIT_X
 
|RVector2.UNIT_X
|2D x unit vector: (1, 0)
+
|2D x unit vector2: (1, 0)
 
|-
 
|-
 
|RVector2.UNIT_Y
 
|RVector2.UNIT_Y
|2D y unit vector: (0, 1)
+
|2D y unit vector2: (0, 1)
 
|-
 
|-
 
|RVector2.UNIT_XY
 
|RVector2.UNIT_XY
|2D unit vector: (1, 1)
+
|2D unit vector2: (1, 1)
 
|}
 
|}
  
==Constructors & Destructors==
+
== Constructors & Destructors ==
  
===__init__===
+
=== __init__ ===
  
Initialize a new RVector2 object as a 2D zero vector: (0, 0).
+
Initialize a new RVector2 object as a zeroed 2D vector: (0, 0).
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
 
a = RLPy.RVector2()
 
a = RLPy.RVector2()
 
</syntaxhighlight>
 
</syntaxhighlight>
  
----
+
=== __init__( self, x, y ) ===
  
===__init__( self, x, y )===
+
Initialize a new [[IC_Python_API:RLPy_RVector2|RVector2]] object as a 2D vector: (x, y).
  
Initialize a new RVector2 object as a 2D vector: (x, y).
+
==== Parameters ====
 +
:'''x''' [IN] a numerical value for x coordinate - float / int
 +
:'''y''' [IN] a numerical value for y coordinate - float / int
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
 
a = RLPy.RVector2(1, 2)
 
a = RLPy.RVector2(1, 2)
 
</syntaxhighlight>
 
</syntaxhighlight>
  
====Parameters====
+
=== __init__( self, args ) ===
  
x  [IN]    a numerical value for x coordinate - float or int<br/>
+
Initialize a new [[IC_Python_API:RLPy_RVector2|RVector2]] object with another [[IC_Python_API:RLPy_RVector2|RVector2]] object: args. This new [[IC_Python_API:RLPy_RVector2|RVector2]] object has the same value as args.
y  [IN]    a numerical value for y coordinate - float or int<br/>
+
 
+
----
+
 
+
===__init__( self, args )===
+
 
+
Initialize a new RVector2 object with another RVector2 object: args. This new RVector2 object has the same value as args.
+
 
+
<syntaxhighlight lang="Python">
+
  
 +
<syntaxhighlight lang="python">
 
a = RLPy.RVector2(1, 2)
 
a = RLPy.RVector2(1, 2)
 
b = RLPy.RVector2(a)
 
b = RLPy.RVector2(a)
 
 
</syntaxhighlight>
 
</syntaxhighlight>
  
==Operators==
+
== Operators ==
 +
 
 
=== == ===
 
=== == ===
The “equal to” operator.
+
 
<syntaxhighlight lang="Python">
+
The "equal to" operator.
 +
 
 +
See Also: [[#!=|!=]]
 +
 
 +
<syntaxhighlight lang="python">
 
a = RLPy.RVector2(1, 2)
 
a = RLPy.RVector2(1, 2)
 
b = a
 
b = a
print(a == b)                         #True
+
 
 +
print(a == b) #True
 
</syntaxhighlight>
 
</syntaxhighlight>
  
----
 
 
=== != ===
 
=== != ===
The “not equal to” operator.
+
 
<syntaxhighlight lang="Python">
+
The "not equal to" operator.
 +
 
 +
See Also: [[#==|==]]
 +
 
 +
<syntaxhighlight lang="python">
 
a = RLPy.RVector2()
 
a = RLPy.RVector2()
 
b = RLPy.RVector2(1, 2)
 
b = RLPy.RVector2(1, 2)
print(a != b)                         #True
+
 
 +
print(a != b) #True
 
</syntaxhighlight>
 
</syntaxhighlight>
  
----
 
 
=== < ===
 
=== < ===
  
The “less than” operator. Similar to string comparison: If first element (x) less than, return '''True''', if greater than, return '''False''', if equal then compare the second element (y)When (y) is greater than or equal return '''False''' else return '''True'''.
+
The "less than" operator. Similar to string comparison: Returns '''True''' upon the first match that is less than, and '''False''' if it is greater than.  If the current comparison is equal, continue onto the next element.  If all elements are equal then return '''False'''.
  
<syntaxhighlight lang="Python">
+
See Also: [[#<=|<=]]
 +
 
 +
<syntaxhighlight lang="python">
 
a = RLPy.RVector2(0, 0)
 
a = RLPy.RVector2(0, 0)
 
b = RLPy.RVector2(0, 1)
 
b = RLPy.RVector2(0, 1)
Line 91: Line 95:
 
d = RLPy.RVector2(0, 0)
 
d = RLPy.RVector2(0, 0)
  
print(a < b)                       #True
+
print(a< b) #True
print(b < c)                       #True
+
print(b< c) #True
print(a < d)                       #False
+
print(a< d) #False
 
</syntaxhighlight>
 
</syntaxhighlight>
 
----
 
  
 
=== > ===
 
=== > ===
The “greater than” operator. Similar to string comparison: If element (x) is greater than, return '''True''', if less than, return '''False''', if equal then compare the second element (y). If (y) is greater than or equal, return '''False''', else return '''True'''.  
+
 
<syntaxhighlight lang="Python">
+
The "greater than" operator. Similar to string comparison: Returns '''True''' upon the first match that is greater than, and '''False''' if it is less than.  If the current comparison is equal, continue onto the next element. If all elements are equal then return '''False'''.
 +
 
 +
See Also: [[#>=|>=]]
 +
 
 +
<syntaxhighlight lang="python">
 
a = RLPy.RVector2(0, 0)
 
a = RLPy.RVector2(0, 0)
 
b = RLPy.RVector2(0, 1)
 
b = RLPy.RVector2(0, 1)
Line 106: Line 112:
 
d = RLPy.RVector2(0, 0)
 
d = RLPy.RVector2(0, 0)
  
print(b > a)                       #True
+
print(b >a) #True
print(c > b)                       #True
+
print(c >b) #True
print(d > a)                       #False
+
print(d >a) #False
 
</syntaxhighlight>
 
</syntaxhighlight>
 
----
 
  
 
=== <= ===
 
=== <= ===
  
The “less than or equal to” operator. Similar to string comparison: If element (x) is less than, return '''True''', if greater than, return '''False''', if equal then compare the second element (y). If (y) is greater than, return '''False''', else return '''True'''.
+
The "less than or equal" operator. Similar to string comparison: Returns '''True''' upon the first match that is less than, and '''False''' if it is greater than.  If the current comparison is equal, continue onto the next element. If all elements are equal then return '''True'''.
  
<syntaxhighlight lang="Python">
+
See Also: [[#<|<]]
 +
 
 +
<syntaxhighlight lang="python">
 
a = RLPy.RVector2(0, 0)
 
a = RLPy.RVector2(0, 0)
 
b = RLPy.RVector2(0, 1)
 
b = RLPy.RVector2(0, 1)
Line 123: Line 129:
 
d = RLPy.RVector2(0, 0)
 
d = RLPy.RVector2(0, 0)
  
print(a <= b)                     #True
+
print(a<= b) #True
print(b <= c)                     #True
+
print(b<= c) #True
print(a <= d)                     #True
+
print(a<= d) #True
 
</syntaxhighlight>
 
</syntaxhighlight>
 
----
 
  
 
=== >= ===
 
=== >= ===
  
The "greater than or equal to" operator. Similar to string comparison: If element (x) is greater than, return '''True''', if less than, return '''False''', if equal then compare the second element (y). If (y) is less than, return '''False''', else return '''True'''.  
+
The "greater than or equal" operator. Similar to string comparison: Returns '''True''' upon the first match that is greater than, and '''False''' if it is less than.  If the current comparison is equal, continue onto the next element. If all elements are equal then return '''True'''.
 +
 
 +
See Also: [[#>|>]]
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
 
a = RLPy.RVector2(0, 0)
 
a = RLPy.RVector2(0, 0)
 
b = RLPy.RVector2(0, 1)
 
b = RLPy.RVector2(0, 1)
Line 140: Line 146:
 
d = RLPy.RVector2(0, 0)
 
d = RLPy.RVector2(0, 0)
  
print(b >= a)                       #True
+
print(b >= a) #True
print(c >= b)                       #True
+
print(c >= b) #True
print(d >= a)                       #True
+
print(d >= a) #True
 
</syntaxhighlight>
 
</syntaxhighlight>
 
----
 
  
 
=== + ===
 
=== + ===
The “addition” operator. Perform 2D vector addition.
+
 
<syntaxhighlight lang="Python">
+
The "addition" operator. Perform 2D vector addition.
 +
 
 +
See Also: [[#+=|+=]]
 +
 
 +
<syntaxhighlight lang="python">
 
a = RLPy.RVector2(0, 1)
 
a = RLPy.RVector2(0, 1)
 
b = RLPy.RVector2(1, 2)
 
b = RLPy.RVector2(1, 2)
 
c = a + b
 
c = a + b
print(str(c.x) + ', ' + str(c.y))       #1.0, 3.0
+
 
 +
print(str(c.x) + ', ' + str(c.y)) # 1.0, 3.0
 
</syntaxhighlight>
 
</syntaxhighlight>
  
----
 
 
=== - ===
 
=== - ===
The “subtraction” operator. Perform 2D vector subtraction.
+
 
<syntaxhighlight lang="Python">
+
The "subtraction" operator. Perform 2D vector subtraction.
 +
 
 +
See Also: [[#-=|-=]]
 +
 
 +
<syntaxhighlight lang="python">
 
a = RLPy.RVector2(0, 1)
 
a = RLPy.RVector2(0, 1)
 
b = RLPy.RVector2(1, 3)
 
b = RLPy.RVector2(1, 3)
c = b - a  
+
c = b - a
print(str(c.x) + ', ' + str(c.y))       #1.0, 2.0
+
 
 +
print(str(c.x) + ', ' + str(c.y)) # 1.0, 2.0
 
</syntaxhighlight>
 
</syntaxhighlight>
  
----
 
 
=== * ===
 
=== * ===
The “multiplication” operator. Perform a scalar multiplication when the second element is an integer or float.  If the second operand is another vector2, then the respective x, y elements are multiplied.
 
  
<syntaxhighlight lang="Python">
+
The "multiplication" operator. Perform a scalar multiplication when the second operand is an integer or float. If the second operand is another 2D vector, then the corresponding elements are multiplied.
 +
 
 +
See Also: [[#*=|*=]]
 +
 
 +
<syntaxhighlight lang="python">
 
a = RLPy.RVector2(1, 2)
 
a = RLPy.RVector2(1, 2)
 
b = a * 2
 
b = a * 2
 
c = RLPy.RVector2(2, 3)
 
c = RLPy.RVector2(2, 3)
 
d = a * c
 
d = a * c
print(str(b.x) + ', ' + str(b.y))     #2.0, 4.0
+
 
print(str(d.x) + ', ' + str(d.y))     #2.0, 6.0
+
print(str(b.x) + ', ' + str(b.y)) # 2.0, 4.0
 +
print(str(d.x) + ', ' + str(d.y)) # 2.0, 6.0
 
</syntaxhighlight>
 
</syntaxhighlight>
 
----
 
  
 
=== / ===
 
=== / ===
  
The "division" operator. Perform a scalar division when the second operand is an integer or float. If the second operand is another vector2, then the respective x,y elements are divided.  
+
The "division" operator. Perform a scalar division when the second operand is an integer or float. If the second operand is another 2D vector, then the corresponding elements are divided.
  
<syntaxhighlight lang="Python">
+
See Also: [[#/=|/=]]
 +
 
 +
<syntaxhighlight lang="python">
 
a = RLPy.RVector2(1, 2)
 
a = RLPy.RVector2(1, 2)
 
b = a / 2
 
b = a / 2
 
c = RLPy.RVector2(2, 3)
 
c = RLPy.RVector2(2, 3)
 
d = a / c
 
d = a / c
print(str(b.x) + ', ' + str(b.y))   #0.5, 1.0
+
 
print(str(d.x) + ', ' + str(d.y))   #0.5, 0.6666666865348816
+
print(str(b.x) + ', ' + str(b.y)) # 0.5, 1.0
 +
print(str(d.x) + ', ' + str(d.y)) # 0.5, 0.6666666865348816
 
</syntaxhighlight>
 
</syntaxhighlight>
 
----
 
  
 
=== - ===
 
=== - ===
The “unary minus” operator. Inverse the sign of each element.
+
 
<syntaxhighlight lang="Python">
+
The "unary minus" operator. Inverse the sign of each element.
 +
 
 +
<syntaxhighlight lang="python">
 
a = RLPy.RVector2(1, 2)
 
a = RLPy.RVector2(1, 2)
 
b = -a
 
b = -a
print(str(b.x) + ', ' + str(b.y))     #-1.0, -2.0
+
 
 +
print(str(b.x) + ', ' + str(b.y)) # -1.0, -2.0
 
</syntaxhighlight>
 
</syntaxhighlight>
  
----
 
 
=== += ===
 
=== += ===
The “addition assignment” operator.
+
 
<syntaxhighlight lang="Python">
+
The "addition assignment" operator.
 +
 
 +
See Also: [[#+|+]]
 +
 
 +
<syntaxhighlight lang="python">
 
a = RLPy.RVector2(0, 1)
 
a = RLPy.RVector2(0, 1)
 
b = RLPy.RVector2(1, 2)
 
b = RLPy.RVector2(1, 2)
 
a += b
 
a += b
print(str(a.x) + ', ' + str(a.y))     #1.0, 3.0
+
 
 +
print(str(a.x) + ', ' + str(a.y)) # 1.0, 3.0
 
</syntaxhighlight>
 
</syntaxhighlight>
  
---- 
 
 
=== -= ===
 
=== -= ===
The “subtraction assignment” operator.
+
 
<syntaxhighlight lang="Python">
+
The "subtraction assignment" operator.
 +
 
 +
See Also: [[#-|-]]
 +
 
 +
<syntaxhighlight lang="python">
 
a = RLPy.RVector2(0, 1)
 
a = RLPy.RVector2(0, 1)
 
b = RLPy.RVector2(1, 2)
 
b = RLPy.RVector2(1, 2)
 
a -= b
 
a -= b
print(str(a.x) + ', ' + str(a.y))     #-1.0, -1.0
+
 
 +
print(str(a.x) + ', ' + str(a.y)) # -1.0, -1.0
 
</syntaxhighlight>
 
</syntaxhighlight>
 
----
 
  
 
=== *= ===
 
=== *= ===
The “multiplication assignment” operator. Please refer to '''*''' operator for calculation method.  
+
 
<syntaxhighlight lang="Python">
+
The "multiplication assignment" operator. For the calculation method, refer to the '''*''' operator.
 +
 
 +
See Also: [[#*|*]]
 +
 
 +
<syntaxhighlight lang="python">
 
a = RLPy.RVector2(1, 2)
 
a = RLPy.RVector2(1, 2)
 
a *= 2
 
a *= 2
Line 234: Line 262:
 
c = RLPy.RVector2(2, 3)
 
c = RLPy.RVector2(2, 3)
 
b *= c
 
b *= c
print(str(a.x) + ', ' + str(a.y))    #2.0, 4.0
 
print(str(b.x) + ', ' + str(b.y))    #2.0, 6.0
 
</syntaxhighlight>
 
  
----
+
print(str(a.x) + ', ' + str(a.y)) # 2.0, 4.0
 +
print(str(b.x) + ', ' + str(b.y)) # 2.0, 6.0
 +
</syntaxhighlight>
  
 
=== /= ===
 
=== /= ===
The “division assignment” operator. Please refer to '''/''' operator for calculation method.
+
 
<syntaxhighlight lang="Python">
+
The "division assignment" operator. For the calculation method, refer to the '''/''' operator.
 +
 
 +
See Also: [[#/|/]]
 +
 
 +
<syntaxhighlight lang="python">
 
a = RLPy.RVector2(1, 2)
 
a = RLPy.RVector2(1, 2)
 
a /= 2
 
a /= 2
Line 248: Line 279:
 
c = RLPy.RVector2(2, 3)
 
c = RLPy.RVector2(2, 3)
 
b /= c
 
b /= c
print(str(a.x) + ', ' + str(a.y))    #0.5, 1.0
 
print(str(b.x) + ', ' + str(b.y))    #0.5, 0.6666666865348816
 
</syntaxhighlight>
 
  
==Member Functions==
+
print(str(a.x) + ', ' + str(a.y)) # 0.5, 1.0
===AddWithWeight===
+
print(str(b.x) + ', ' + str(b.y)) # 0.5, 0.6666666865348816
<syntaxhighlight lang="Python">
+
RLPy.RVector2.AddWithWeight ( self, vSrc, fWeight )
+
 
</syntaxhighlight>
 
</syntaxhighlight>
Add a vector with weight.
 
====Parameters====
 
<div style="margin-left: 2em;">
 
  
'''vSrc''' [IN] The vector to add - RLPy.RVector2
+
== Member Functions ==
  
'''fWeight''' [IN] The value of weight - float
+
=== AddWithWeight ( self, vSrc, fWeight ) ===
</div>
+
 
-----
+
Add this and another 2D vector with weighting.
===Dot===
+
 
<syntaxhighlight lang="Python">
+
==== Parameters ====
RLPy.RVector2.Dot ( self, vV )
+
:'''vSrc''' [IN] The 2D vector to add - [[IC_Python_API:RLPy_RVector2|RVector2]]
 +
:'''fWeight''' [IN] The weight value - float
 +
 
 +
<syntaxhighlight lang="python">
 +
a = RLPy.RVector2(0, 1)
 +
b = RLPy.RVector2(1, 2)
 +
a.AddWithWeight(b, 2)
 +
 
 +
print(str(a.x) + ', ' + str(a.y)) # 2.0, 5.0
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
=== Dot ( self, vV ) ===
 +
 
Calculate dot production of the two vectors.
 
Calculate dot production of the two vectors.
====Parameters====
 
<div style="margin-left: 2em;">
 
  
'''vV''' [IN] The vector - RLPy.RVector2
+
==== Parameters ====
</div>
+
:'''vV''' [IN] Another 2D vector to compute dot product - [[IC_Python_API:RLPy_RVector2|RVector2]]
====Returns====
+
 
<div style="margin-left: 2em;">The value of the dot production - float
+
==== Returns ====
</div>
+
:The value of the dot product - float
-----
+
 
===Inverse===
+
<syntaxhighlight lang="python">
<syntaxhighlight lang="Python">
+
a = RLPy.RVector2(1, 2)
RLPy.RVector2.Inverse ( self )
+
dot = a.Dot( RLPy.RVector2(3, 5) )
 +
 
 +
print(dot) #13.0
 
</syntaxhighlight>
 
</syntaxhighlight>
Inverse this vector.
+
 
====Returns====
+
=== Inverse ( self ) ===
<div style="margin-left: 2em;">The inversed vector - RLPy.RVector2
+
 
</div>
+
Return the inverse of this 2D vector by inverting its x, y elements.
-----
+
 
===Length===
+
==== Returns ====
<syntaxhighlight lang="Python">
+
:A new 2D vector that is the inverse of this 2D vector - [[IC_Python_API:RLPy_RVector2|RVector2]]
RLPy.RVector2.Length ( self )
+
 
 +
<syntaxhighlight lang="python">
 +
a = RLPy.RVector2(0.5, 4)
 +
b = a.Inverse()
 +
 
 +
print(str(b.x) + ', ' + str(b.y)) # 2.0, 0.25
 
</syntaxhighlight>
 
</syntaxhighlight>
Length of the vector.
+
 
====Returns====
+
=== Length ( self ) ===
<div style="margin-left: 2em;">The length of this vector - float
+
 
</div>
+
Get the length of this 2D vector.
-----
+
 
===Normalize===
+
==== Returns ====
<syntaxhighlight lang="Python">
+
:The length of this 2D vector - float
RLPy.RVector2.Normalize ( self )
+
 
</syntaxhighlight>
+
<syntaxhighlight lang="python">
Normalizes this vector.
+
a = RLPy.RVector2(3, 4)
====Returns====
+
 
<div style="margin-left: 2em;">The normalized vector - float
+
print( str(a.Length()) ) # 5.0
</div>
+
-----
+
===SetX===
+
<syntaxhighlight lang="Python">
+
RLPy.RVector2.SetX ( self, tX )
+
 
</syntaxhighlight>
 
</syntaxhighlight>
Set the value of the x-axis.
 
====Parameters====
 
<div style="margin-left: 2em;">
 
  
'''tX''' [IN] the value of the x-axis - float
+
=== Normalize ( self ) ===
</div>
+
-----
+
===SetY===
+
  
<syntaxhighlight lang="Python">
+
Normalize this 2D vector.
 +
 
 +
==== Returns ====
 +
:The length of this 2D vector before normalization - float
 +
 
 +
<syntaxhighlight lang="python">
 
a = RLPy.RVector2(1, 1)
 
a = RLPy.RVector2(1, 1)
a.SetY(10)
+
b = a.Normalize()
print(str(a.x) + ', ' + str(a.y))   #1.0, 10.0
+
 
 +
print(str(a.x) + ', ' + str(a.y)) # 0.7071067690849304, 0.7071067690849304
 +
print(b) # 1.4142135381698608
 
</syntaxhighlight>
 
</syntaxhighlight>
  
Set the value of the y-axis.
+
=== SetX ( self, tX ) ===
  
====Parameters====
+
Set the value of the x-axis on this 2D vector.
  
<div style="margin-left: 2em;">
+
==== Parameters ====
'''tX''' [IN] the value of the y-axis.
+
:'''tX''' [IN] the value of the x-axis - float
</div>
+
-----
+
  
===SquaredLength===
+
<syntaxhighlight lang="python">
 
+
<syntaxhighlight lang="Python">
+
 
a = RLPy.RVector2(1, 1)
 
a = RLPy.RVector2(1, 1)
print(a.SquaredLength())         #2.0
+
a.SetX(10)
 +
 
 +
print(str(a.x) + ', ' + str(a.y)) # 10.0, 1.0
 
</syntaxhighlight>
 
</syntaxhighlight>
  
Squared length of the vector.
+
=== SetY ( self, tY ) ===
  
====Returns====
+
Set the value of the y-axis on this 2D vector.
  
<div style="margin-left: 2em;">
+
==== Parameters ====
The squared length of this vector - float
+
:'''tY''' [IN] The value of the y-axis.
</div>
+
-----
+
  
===X===
+
<syntaxhighlight lang="python">
<syntaxhighlight lang="Python">
+
a = RLPy.RVector2(1, 1)
RLPy.RVector2.X ( self, args )
+
a.SetY(10)
 +
 
 +
print(str(a.x) + ', ' + str(a.y)) # 1.0, 10.0
 
</syntaxhighlight>
 
</syntaxhighlight>
Get the value of the x-axis.
+
 
====Returns====
+
=== SquaredLength ( self ) ===
<div style="margin-left: 2em;">The value of the x-axis - float
+
 
</div>
+
Get the squared length of this 2D vector.
-----
+
 
===Y===
+
==== Returns ====
<syntaxhighlight lang="Python">
+
:The squared length of this 2D vector - float
RLPy.RVector2.Y ( self, args )
+
 
 +
<syntaxhighlight lang="python">
 +
a = RLPy.RVector2(1, 1)
 +
 
 +
print(a.SquaredLength()) # 2.0
 
</syntaxhighlight>
 
</syntaxhighlight>
Get the value of the y-axis.
 
====Returns====
 
<div style="margin-left: 2em;">The value of the y-axis - float
 
</div>
 

Latest revision as of 19:25, 13 April 2020

Main article: Modules.
Last modified: 04/13/2020

Description

This class represents a 2D vector (x, y). This class provides access to RLPy's internal 2D vector math library allowing 2D vectors to be handled easily, in a manner compatible with internal RLPy data structures. It also supports operators and provides some constants for your convenience:

Constant Description
RVector2.ZERO 2D zero vector2: (0, 0)
RVector2.UNIT_X 2D x unit vector2: (1, 0)
RVector2.UNIT_Y 2D y unit vector2: (0, 1)
RVector2.UNIT_XY 2D unit vector2: (1, 1)

Constructors & Destructors

__init__

Initialize a new RVector2 object as a zeroed 2D vector: (0, 0).

a = RLPy.RVector2()

__init__( self, x, y )

Initialize a new RVector2 object as a 2D vector: (x, y).

Parameters

x [IN] a numerical value for x coordinate - float / int
y [IN] a numerical value for y coordinate - float / int
a = RLPy.RVector2(1, 2)

__init__( self, args )

Initialize a new RVector2 object with another RVector2 object: args. This new RVector2 object has the same value as args.

a = RLPy.RVector2(1, 2)
b = RLPy.RVector2(a)

Operators

==

The "equal to" operator.

See Also: !=

a = RLPy.RVector2(1, 2)
b = a

print(a == b) #True

!=

The "not equal to" operator.

See Also: ==

a = RLPy.RVector2()
b = RLPy.RVector2(1, 2)

print(a != b) #True

<

The "less than" operator. Similar to string comparison: Returns True upon the first match that is less than, and False if it is greater than. If the current comparison is equal, continue onto the next element. If all elements are equal then return False.

See Also: <=

a = RLPy.RVector2(0, 0)
b = RLPy.RVector2(0, 1)
c = RLPy.RVector2(1, 0)
d = RLPy.RVector2(0, 0)

print(a< b) #True
print(b< c) #True
print(a< d) #False

>

The "greater than" operator. Similar to string comparison: Returns True upon the first match that is greater than, and False if it is less than. If the current comparison is equal, continue onto the next element. If all elements are equal then return False.

See Also: >=

a = RLPy.RVector2(0, 0)
b = RLPy.RVector2(0, 1)
c = RLPy.RVector2(1, 0)
d = RLPy.RVector2(0, 0)

print(b >a) #True
print(c >b) #True
print(d >a) #False

<=

The "less than or equal" operator. Similar to string comparison: Returns True upon the first match that is less than, and False if it is greater than. If the current comparison is equal, continue onto the next element. If all elements are equal then return True.

See Also: <

a = RLPy.RVector2(0, 0)
b = RLPy.RVector2(0, 1)
c = RLPy.RVector2(1, 0)
d = RLPy.RVector2(0, 0)

print(a<= b) #True
print(b<= c) #True
print(a<= d) #True

>=

The "greater than or equal" operator. Similar to string comparison: Returns True upon the first match that is greater than, and False if it is less than. If the current comparison is equal, continue onto the next element. If all elements are equal then return True.

See Also: >

a = RLPy.RVector2(0, 0)
b = RLPy.RVector2(0, 1)
c = RLPy.RVector2(1, 0)
d = RLPy.RVector2(0, 0)

print(b >= a) #True
print(c >= b) #True
print(d >= a) #True

+

The "addition" operator. Perform 2D vector addition.

See Also: +=

a = RLPy.RVector2(0, 1)
b = RLPy.RVector2(1, 2)
c = a + b

print(str(c.x) + ', ' + str(c.y)) # 1.0, 3.0

-

The "subtraction" operator. Perform 2D vector subtraction.

See Also: -=

a = RLPy.RVector2(0, 1)
b = RLPy.RVector2(1, 3)
c = b - a

print(str(c.x) + ', ' + str(c.y)) # 1.0, 2.0

*

The "multiplication" operator. Perform a scalar multiplication when the second operand is an integer or float. If the second operand is another 2D vector, then the corresponding elements are multiplied.

See Also: *=

a = RLPy.RVector2(1, 2)
b = a * 2
c = RLPy.RVector2(2, 3)
d = a * c

print(str(b.x) + ', ' + str(b.y)) # 2.0, 4.0
print(str(d.x) + ', ' + str(d.y)) # 2.0, 6.0

/

The "division" operator. Perform a scalar division when the second operand is an integer or float. If the second operand is another 2D vector, then the corresponding elements are divided.

See Also: /=

a = RLPy.RVector2(1, 2)
b = a / 2
c = RLPy.RVector2(2, 3)
d = a / c

print(str(b.x) + ', ' + str(b.y)) # 0.5, 1.0
print(str(d.x) + ', ' + str(d.y)) # 0.5, 0.6666666865348816

-

The "unary minus" operator. Inverse the sign of each element.

a = RLPy.RVector2(1, 2)
b = -a

print(str(b.x) + ', ' + str(b.y)) # -1.0, -2.0

+=

The "addition assignment" operator.

See Also: +

a = RLPy.RVector2(0, 1)
b = RLPy.RVector2(1, 2)
a += b

print(str(a.x) + ', ' + str(a.y)) # 1.0, 3.0

-=

The "subtraction assignment" operator.

See Also: -

a = RLPy.RVector2(0, 1)
b = RLPy.RVector2(1, 2)
a -= b

print(str(a.x) + ', ' + str(a.y)) # -1.0, -1.0

*=

The "multiplication assignment" operator. For the calculation method, refer to the * operator.

See Also: *

a = RLPy.RVector2(1, 2)
a *= 2
b = RLPy.RVector2(1, 2)
c = RLPy.RVector2(2, 3)
b *= c

print(str(a.x) + ', ' + str(a.y)) # 2.0, 4.0
print(str(b.x) + ', ' + str(b.y)) # 2.0, 6.0

/=

The "division assignment" operator. For the calculation method, refer to the / operator.

See Also: /

a = RLPy.RVector2(1, 2)
a /= 2
b = RLPy.RVector2(1, 2)
c = RLPy.RVector2(2, 3)
b /= c

print(str(a.x) + ', ' + str(a.y)) # 0.5, 1.0
print(str(b.x) + ', ' + str(b.y)) # 0.5, 0.6666666865348816

Member Functions

AddWithWeight ( self, vSrc, fWeight )

Add this and another 2D vector with weighting.

Parameters

vSrc [IN] The 2D vector to add - RVector2
fWeight [IN] The weight value - float
a = RLPy.RVector2(0, 1)
b = RLPy.RVector2(1, 2)
a.AddWithWeight(b, 2)

print(str(a.x) + ', ' + str(a.y)) # 2.0, 5.0

Dot ( self, vV )

Calculate dot production of the two vectors.

Parameters

vV [IN] Another 2D vector to compute dot product - RVector2

Returns

The value of the dot product - float
a = RLPy.RVector2(1, 2)
dot = a.Dot( RLPy.RVector2(3, 5) )

print(dot) #13.0

Inverse ( self )

Return the inverse of this 2D vector by inverting its x, y elements.

Returns

A new 2D vector that is the inverse of this 2D vector - RVector2
a = RLPy.RVector2(0.5, 4)
b = a.Inverse()

print(str(b.x) + ', ' + str(b.y)) # 2.0, 0.25

Length ( self )

Get the length of this 2D vector.

Returns

The length of this 2D vector - float
a = RLPy.RVector2(3, 4)

print( str(a.Length()) ) # 5.0

Normalize ( self )

Normalize this 2D vector.

Returns

The length of this 2D vector before normalization - float
a = RLPy.RVector2(1, 1)
b = a.Normalize()

print(str(a.x) + ', ' + str(a.y)) # 0.7071067690849304, 0.7071067690849304
print(b) # 1.4142135381698608

SetX ( self, tX )

Set the value of the x-axis on this 2D vector.

Parameters

tX [IN] the value of the x-axis - float
a = RLPy.RVector2(1, 1)
a.SetX(10)

print(str(a.x) + ', ' + str(a.y)) # 10.0, 1.0

SetY ( self, tY )

Set the value of the y-axis on this 2D vector.

Parameters

tY [IN] The value of the y-axis.
a = RLPy.RVector2(1, 1)
a.SetY(10)

print(str(a.x) + ', ' + str(a.y)) # 1.0, 10.0

SquaredLength ( self )

Get the squared length of this 2D vector.

Returns

The squared length of this 2D vector - float
a = RLPy.RVector2(1, 1)

print(a.SquaredLength()) # 2.0