Difference between revisions of "IC Python API:RLPy RTransform"

From Reallusion Wiki!
Jump to: navigation, search
m
m
 
Line 5: Line 5:
 
== Description ==
 
== Description ==
  
This class represent the object transform data. This class provides access to RLPy's internal 4x4 matrix operators and related functions.
+
This class represent the object transform matrix data. This class provides access to RLPy's internal 4x4 matrix operators and related functions.
  
 
See also: [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 
See also: [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
Line 17: Line 17:
 
See Also: [[#+=|+=]]
 
See Also: [[#+=|+=]]
  
<syntaxhighlight lang="python">
+
<syntaxhighlight lang="python" line='line'>
 
matrix_a = RLPy.RMatrix4( 2, 0, 0, 0,
 
matrix_a = RLPy.RMatrix4( 2, 0, 0, 0,
 
                           0, 2, 0, 0,
 
                           0, 2, 0, 0,
Line 42: Line 42:
 
See Also: [[#!=|!=]]
 
See Also: [[#!=|!=]]
  
<syntaxhighlight lang="python">
+
<syntaxhighlight lang="python" line='line'>
 
transform_identity = RLPy.RTransform(RLPy.RTransform.IDENTITY)
 
transform_identity = RLPy.RTransform(RLPy.RTransform.IDENTITY)
 
print( transform_identity == transform_identity ) # true
 
print( transform_identity == transform_identity ) # true
Line 53: Line 53:
 
See Also: [[#==|==]]
 
See Also: [[#==|==]]
  
<syntaxhighlight lang="python">
+
<syntaxhighlight lang="python" line='line'>
 
transform_identity = RLPy.RTransform(RLPy.RTransform.IDENTITY)
 
transform_identity = RLPy.RTransform(RLPy.RTransform.IDENTITY)
 
print( transform_identity != transform_identity ) # false
 
print( transform_identity != transform_identity ) # false
Line 64: Line 64:
 
See Also: [[#+|+]]
 
See Also: [[#+|+]]
  
<syntaxhighlight lang="python">
+
<syntaxhighlight lang="python" line='line'>
 
matrix_a = RLPy.RMatrix4( 2, 0, 0, 0,
 
matrix_a = RLPy.RMatrix4( 2, 0, 0, 0,
 
                           0, 2, 0, 0,
 
                           0, 2, 0, 0,
Line 88: Line 88:
 
=== D (self, args) ===
 
=== D (self, args) ===
  
Get the determinate sign.
+
Get the determinate sign of this transform matrix.
  
 
==== Returns ====
 
==== Returns ====
 
:Returns the value of determinate sign - float
 
:Returns the value of determinate sign - float
  
<syntaxhighlight lang="python">
+
<syntaxhighlight lang="python" line='line'>
 
transform_identity = RLPy.RTransform(RLPy.RTransform.IDENTITY)
 
transform_identity = RLPy.RTransform(RLPy.RTransform.IDENTITY)
 
print(transform_identity.D()) # <Swig Object of type 'float *' at 0x0000027B8A2D1FC0>
 
print(transform_identity.D()) # <Swig Object of type 'float *' at 0x0000027B8A2D1FC0>
Line 100: Line 100:
 
=== S (self, args) ===
 
=== S (self, args) ===
  
Get the Scale of a Transform matrix.
+
Get the Scale of this transform matrix.
  
 
==== Returns ====
 
==== Returns ====
 
:The value of scale in 3D vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
 
:The value of scale in 3D vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
  
<syntaxhighlight lang="python">
+
<syntaxhighlight lang="python" line='line'>
 
d_determinate = 0
 
d_determinate = 0
 
s_scale      = RLPy.RVector3( RLPy.RVector3.ZERO )
 
s_scale      = RLPy.RVector3( RLPy.RVector3.ZERO )
Line 124: Line 124:
 
=== U (self, args) ===
 
=== U (self, args) ===
  
Get the stretch of Transform matrix.
+
Get the stretch of this transform matrix.
  
 
==== Returns ====
 
==== Returns ====
 
:The value of stretch in quaternion - [[IC_Python_API:RLPy_RQuaternion|RQuaternion]]
 
:The value of stretch in quaternion - [[IC_Python_API:RLPy_RQuaternion|RQuaternion]]
  
<syntaxhighlight lang="python">
+
<syntaxhighlight lang="python" line='line'>
 
d_determinate = 0
 
d_determinate = 0
 
s_scale      = RLPy.RVector3( RLPy.RVector3.ZERO )
 
s_scale      = RLPy.RVector3( RLPy.RVector3.ZERO )
Line 150: Line 150:
 
=== R (self, args) ===
 
=== R (self, args) ===
  
Get the rotation of Transform matrix.
+
Get the rotation of this transform matrix.
  
 
==== Returns ====
 
==== Returns ====
 
:The value of rotation in quaternion - [[IC_Python_API:RLPy_RQuaternion|RQuaternion]]
 
:The value of rotation in quaternion - [[IC_Python_API:RLPy_RQuaternion|RQuaternion]]
  
<syntaxhighlight lang="python">
+
<syntaxhighlight lang="python" line='line'>
 
d_determinate = 0
 
d_determinate = 0
 
s_scale      = RLPy.RVector3( RLPy.RVector3.ZERO )
 
s_scale      = RLPy.RVector3( RLPy.RVector3.ZERO )
Line 176: Line 176:
 
=== T (self, args) ===
 
=== T (self, args) ===
  
Get the translation of Transform matrix.
+
Get the translation of this transform matrix.
  
 
==== Returns ====
 
==== Returns ====
 
:The value of translation in 3D vector - [[IC_Python_API:RLPy_RVector3|RVector3]].
 
:The value of translation in 3D vector - [[IC_Python_API:RLPy_RVector3|RVector3]].
  
<syntaxhighlight lang="python">
+
<syntaxhighlight lang="python" line='line'>
 
d_determinate = 0
 
d_determinate = 0
 
s_scale      = RLPy.RVector3( RLPy.RVector3.ZERO )
 
s_scale      = RLPy.RVector3( RLPy.RVector3.ZERO )
Line 200: Line 200:
 
=== AlmostEquel (self, kRts) ===
 
=== AlmostEquel (self, kRts) ===
  
Two transform are almost equal or not.
+
Check if this and another transform is almost equal.
  
 
==== Parameters ====
 
==== Parameters ====
Line 206: Line 206:
  
 
==== Returns ====
 
==== Returns ====
:Return true while two transform is almost equal - bool
+
:'''True''' if this and another transform is almost equal, else '''False''' - bool
  
<syntaxhighlight lang="python">
+
<syntaxhighlight lang="python" line='line'>
 
matrix4 = RLPy.RMatrix4(-1, 0, 0, 0,
 
matrix4 = RLPy.RMatrix4(-1, 0, 0, 0,
 
                         0,-1, 0, 0,
 
                         0,-1, 0, 0,
Line 222: Line 222:
 
=== Inverse (self) ===
 
=== Inverse (self) ===
  
Inverse of the transform..
+
Get the inverse of this transform.
  
 
==== Returns ====
 
==== Returns ====
:A inversed transform - [[IC_Python_API:RLPy_RTransform|RTransform]]
+
:The inverse of this transform - [[IC_Python_API:RLPy_RTransform|RTransform]]
  
<syntaxhighlight lang="python">
+
<syntaxhighlight lang="python" line='line'>
 
matrix4 = RLPy.RMatrix4(-1, 0, 0, 0,
 
matrix4 = RLPy.RMatrix4(-1, 0, 0, 0,
 
                         0,-1, 0, 0,
 
                         0,-1, 0, 0,
Line 240: Line 240:
 
=== From (self, mMatrix) ===
 
=== From (self, mMatrix) ===
  
Set a transform from 4x4 matrix.
+
Set this transform from a 4x4 matrix.
  
 
==== Returns ====
 
==== Returns ====
 
:A transform composited from 4x4 matrix - [[IC_Python_API:RLPy_RTransform|RTransform]]
 
:A transform composited from 4x4 matrix - [[IC_Python_API:RLPy_RTransform|RTransform]]
  
<syntaxhighlight lang="python">
+
<syntaxhighlight lang="python" line='line'>
 
matrix4 = RLPy.RMatrix4(-1, 0, 0, 0,
 
matrix4 = RLPy.RMatrix4(-1, 0, 0, 0,
 
                         0,-1, 0, 0,
 
                         0,-1, 0, 0,
Line 258: Line 258:
 
=== Matrix (self) ===
 
=== Matrix (self) ===
  
Get 4x4 matrix from Transform.
+
Get 4x4 matrix from this transform.
  
 
==== Returns ====
 
==== Returns ====
 
:A 4x4 matrix - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 
:A 4x4 matrix - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
  
<syntaxhighlight lang="python">
+
<syntaxhighlight lang="python" line='line'>
 
matrix4 = RLPy.RMatrix4( 0,-1, 0, 0,  
 
matrix4 = RLPy.RMatrix4( 0,-1, 0, 0,  
 
                         -1, 0, 0, 0,
 
                         -1, 0, 0, 0,
Line 277: Line 277:
 
=== IsIdentity (self) ===
 
=== IsIdentity (self) ===
  
Check if this transform is identity.
+
Check if this transform is equal to identity transform.  Identity transform corresponds to "no transform" - the object is perfectly aligned with the world or parent axes and positioned at the origin.
  
 
==== Returns ====
 
==== Returns ====
:True if the transform is identity - bool
+
:'''True''' if the transform is equal to identity transform, else '''False''' - bool
  
<syntaxhighlight lang="python">
+
<syntaxhighlight lang="python" line='line'>
 
matrix4 = RLPy.RMatrix4( 1, 0, 0, 0,
 
matrix4 = RLPy.RMatrix4( 1, 0, 0, 0,
 
                         0, 1, 0, 0,
 
                         0, 1, 0, 0,
Line 293: Line 293:
 
=== Scale (self) ===
 
=== Scale (self) ===
  
Form a scale matrix..
+
Form a scale matrix from this transform.
  
 
==== Returns ====
 
==== Returns ====
 
:A 3x3 scale matrix from this transform - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
 
:A 3x3 scale matrix from this transform - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
  
<syntaxhighlight lang="python">
+
<syntaxhighlight lang="python" line='line'>
 
scale = RLPy.RVector3( 4, 5, 6 )
 
scale = RLPy.RVector3( 4, 5, 6 )
 
matrix4 = RLPy.RMatrix4().FromRTS( RLPy.RMatrix3.IDENTITY,
 
matrix4 = RLPy.RMatrix4().FromRTS( RLPy.RMatrix3.IDENTITY,
Line 312: Line 312:
 
=== Rotate (self) ===
 
=== Rotate (self) ===
  
Form a rotate matrix.
+
Form a rotate matrix from this transform.
  
 
==== Returns ====
 
==== Returns ====
 
:A 3x3 rotate matrix from this transform - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
 
:A 3x3 rotate matrix from this transform - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
  
<syntaxhighlight lang="python">
+
<syntaxhighlight lang="python" line='line'>
 
rotate = RLPy.RMatrix3( 0.8137977, -0.4698463,  0.3420202,
 
rotate = RLPy.RMatrix3( 0.8137977, -0.4698463,  0.3420202,
 
                           0.5438381,  0.8231729, -0.1631759,
 
                           0.5438381,  0.8231729, -0.1631759,
 
                           -0.2048741,  0.3187958,  0.9254166 )
 
                           -0.2048741,  0.3187958,  0.9254166 )
matrix4  = RLPy.RMatrix4().FromRTS( rotate, RLPy.RVector3.UNIT_XYZ , RLPy.RVector3.UNIT_XYZ )
+
matrix4  = RLPy.RMatrix4().FromRTS( [[#Rotate (self)|Rotate]], RLPy.RVector3.UNIT_XYZ , RLPy.RVector3.UNIT_XYZ )
 
     transform_data = RLPy.RTransform().From( matrix4 )
 
     transform_data = RLPy.RTransform().From( matrix4 )
  
Line 331: Line 331:
 
=== GetSR (self) ===
 
=== GetSR (self) ===
  
Form a 3x3 matrix with rotation and scale.
+
Form a 3x3 matrix with rotation and scale from this transform.
  
 
==== Returns ====
 
==== Returns ====
 
:A 3x3 matrix from this transform - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
 
:A 3x3 matrix from this transform - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
  
<syntaxhighlight lang="python">
+
<syntaxhighlight lang="python" line='line'>
 
scale  = RLPy.RVector3( 2, 2, 2 )
 
scale  = RLPy.RVector3( 2, 2, 2 )
 
rotate = RLPy.RMatrix3( -0,-0, 1,
 
rotate = RLPy.RMatrix3( -0,-0, 1,
 
                         -1,-0, 0,
 
                         -1,-0, 0,
 
                         0,-1,-0 )
 
                         0,-1,-0 )
matrix4 = RLPy.RMatrix4().FromRTS( rotate, RLPy.RVector3.UNIT_XYZ , scale )
+
matrix4 = RLPy.RMatrix4().FromRTS( [[#Rotate (self)|Rotate]], RLPy.RVector3.UNIT_XYZ , scale )
 
transform_data = RLPy.RTransform().From( matrix4 )
 
transform_data = RLPy.RTransform().From( matrix4 )
  

Latest revision as of 19:31, 13 April 2020

Main article: Modules.
Last modified: 04/13/2020

Description

This class represent the object transform matrix data. This class provides access to RLPy's internal 4x4 matrix operators and related functions.

See also: RMatrix4

Operators

+

The "addition" operator.

See Also: +=

 1 matrix_a = RLPy.RMatrix4( 2, 0, 0, 0,
 2                           0, 2, 0, 0,
 3                           0, 0, 2, 0,
 4                           1, 2, 3, 1 )
 5 matrix_b = RLPy.RMatrix4( 3, 0, 0, 0,
 6                           0, 3, 0, 0,
 7                           0, 0, 3, 0,
 8                           2, 2, 2, 1 )
 9 transform =  RLPy.RTransform().From( matrix_a ) + RLPy.RTransform().From( matrix_b )
10 
11 print( transform.Matrix().GetRow(0)[0] == 2*3 ) # true
12 print( transform.Matrix().GetRow(1)[1] == 2*3 ) # true
13 print( transform.Matrix().GetRow(2)[2] == 2*3 ) # true
14 print( transform.Matrix().GetRow(3)[0] == 1+2 ) # true
15 print( transform.Matrix().GetRow(3)[1] == 2+2 ) # true
16 print( transform.Matrix().GetRow(3)[2] == 3+2 ) # true

==

The "equal to" operator.

See Also: !=

1 transform_identity = RLPy.RTransform(RLPy.RTransform.IDENTITY)
2 print( transform_identity == transform_identity ) # true

!=

The "not equal to" operator.

See Also: ==

1 transform_identity = RLPy.RTransform(RLPy.RTransform.IDENTITY)
2 print( transform_identity != transform_identity ) # false

+=

The "addition assignment" operator.

See Also: +

 1 matrix_a = RLPy.RMatrix4( 2, 0, 0, 0,
 2                           0, 2, 0, 0,
 3                           0, 0, 2, 0,
 4                           1, 2, 3, 1 )
 5 matrix_b = RLPy.RMatrix4( 3, 0, 0, 0,
 6                           0, 3, 0, 0,
 7                           0, 0, 3, 0,
 8                           2, 2, 2, 1 )
 9 transform = RLPy.RTransform().From( matrix_a )
10 transform += RLPy.RTransform().From( matrix_b )
11 
12 print( transform.Matrix().GetRow(0)[0] == 2*3 ) # true
13 print( transform.Matrix().GetRow(1)[1] == 2*3 ) # true
14 print( transform.Matrix().GetRow(2)[2] == 2*3 ) # true
15 print( transform.Matrix().GetRow(3)[0] == 1+2 ) # true
16 print( transform.Matrix().GetRow(3)[1] == 2+2 ) # true
17 print( transform.Matrix().GetRow(3)[2] == 3+2 ) # true

Member Functions

D (self, args)

Get the determinate sign of this transform matrix.

Returns

Returns the value of determinate sign - float
1 transform_identity = RLPy.RTransform(RLPy.RTransform.IDENTITY)
2 print(transform_identity.D()) # <Swig Object of type 'float *' at 0x0000027B8A2D1FC0>

S (self, args)

Get the Scale of this transform matrix.

Returns

The value of scale in 3D vector - RVector3
 1 d_determinate = 0
 2 s_scale       = RLPy.RVector3( RLPy.RVector3.ZERO )
 3 u_stretch     = RLPy.RQuaternion( RLPy.RQuaternion.IDENTITY )
 4 r_rotate      = RLPy.RQuaternion( RLPy.RQuaternion.IDENTITY )
 5 t_translate   = RLPy.RVector3( RLPy.RVector3.ZERO )
 6 
 7 s_scale.x = 1
 8 s_scale.y = 2
 9 s_scale.z = 3
10 transform_data = RLPy.RTransform(d_determinate,s_scale,u_stretch,r_rotate,t_translate )
11 
12 print( transform_data.S().x ) # 1
13 print( transform_data.S().y ) # 2
14 print( transform_data.S().z ) # 3

U (self, args)

Get the stretch of this transform matrix.

Returns

The value of stretch in quaternion - RQuaternion
 1 d_determinate = 0
 2 s_scale       = RLPy.RVector3( RLPy.RVector3.ZERO )
 3 u_stretch     = RLPy.RQuaternion( RLPy.RQuaternion.IDENTITY )
 4 r_rotate      = RLPy.RQuaternion( RLPy.RQuaternion.IDENTITY )
 5 t_translate   = RLPy.RVector3( RLPy.RVector3.ZERO )
 6 
 7 u_stretch.x = 4
 8 u_stretch.y = 5
 9 u_stretch.z = 6
10 u_stretch.w = 7
11 transform_data = RLPy.RTransform(d_determinate,s_scale,u_stretch,r_rotate,t_translate )
12 
13 print( transform_data.U().x ) # 4
14 print( transform_data.U().y ) # 5
15 print( transform_data.U().z ) # 6
16 print( transform_data.U().w ) # 7

R (self, args)

Get the rotation of this transform matrix.

Returns

The value of rotation in quaternion - RQuaternion
 1 d_determinate = 0
 2 s_scale       = RLPy.RVector3( RLPy.RVector3.ZERO )
 3 u_stretch     = RLPy.RQuaternion( RLPy.RQuaternion.IDENTITY )
 4 r_rotate      = RLPy.RQuaternion( RLPy.RQuaternion.IDENTITY )
 5 t_translate   = RLPy.RVector3( RLPy.RVector3.ZERO )
 6 
 7 r_rotate.x = 8
 8 r_rotate.y = 9
 9 r_rotate.z = 10
10 r_rotate.w = 11
11 transform_data = RLPy.RTransform(d_determinate,s_scale,u_stretch,r_rotate,t_translate )
12 
13 print( transform_data.R().x ) # 8
14 print( transform_data.R().y ) # 9
15 print( transform_data.R().z ) # 10
16 print( transform_data.R().w ) # 11

T (self, args)

Get the translation of this transform matrix.

Returns

The value of translation in 3D vector - RVector3.
 1 d_determinate = 0
 2 s_scale       = RLPy.RVector3( RLPy.RVector3.ZERO )
 3 u_stretch     = RLPy.RQuaternion( RLPy.RQuaternion.IDENTITY )
 4 r_rotate      = RLPy.RQuaternion( RLPy.RQuaternion.IDENTITY )
 5 t_translate   = RLPy.RVector3( RLPy.RVector3.ZERO )  
 6 
 7 t_translate.x = 12
 8 t_translate.y = 13
 9 t_translate.z = 14
10 transform_data = RLPy.RTransform(d_determinate,s_scale,u_stretch,r_rotate,t_translate )
11 
12 print( transform_data.T().x ) # 12
13 print( transform_data.T().y ) # 13
14 print( transform_data.T().z ) # 14

AlmostEquel (self, kRts)

Check if this and another transform is almost equal.

Parameters

kRts [IN] The transform - RTransform

Returns

True if this and another transform is almost equal, else False - bool
1 matrix4 = RLPy.RMatrix4(-1, 0, 0, 0,
2                          0,-1, 0, 0,
3                          0, 0, 1, 0,
4                         -1, 1, 1, 1 )
5                         
6 transform1  = RLPy.RTransform().From( matrix4 )        
7 transform2  = RLPy.RTransform().From( matrix4 ) 
8 
9 print( transform1.AlmostEquel( transform2 )) # True

Inverse (self)

Get the inverse of this transform.

Returns

The inverse of this transform - RTransform
1 matrix4 = RLPy.RMatrix4(-1, 0, 0, 0,
2                          0,-1, 0, 0,
3                          0, 0, 1, 0,
4                         -1, 1, 1, 1 )
5                         
6 transform = RLPy.RTransform().From( matrix4 )
7 print( transform.Matrix().GetRow(0)[0] ) 
8 print( transform.Matrix().GetRow(0)[1] )

From (self, mMatrix)

Set this transform from a 4x4 matrix.

Returns

A transform composited from 4x4 matrix - RTransform
1 matrix4 = RLPy.RMatrix4(-1, 0, 0, 0,
2                          0,-1, 0, 0,
3                          0, 0, 1, 0,
4                         -1, 1, 1, 1 )
5 transform = RLPy.RTransform().From( matrix4 )
6 
7 print( transform.Matrix().GetRow(0)[0] ) 
8 print( transform.Matrix().GetRow(0)[1] )

Matrix (self)

Get 4x4 matrix from this transform.

Returns

A 4x4 matrix - RMatrix4
1 matrix4 = RLPy.RMatrix4( 0,-1, 0, 0, 
2                         -1, 0, 0, 0,
3                          0, 0,-1, 0,
4                          1,-2, 1, 1 )
5 transform_data = RLPy.RTransform().From( matrix4 )
6 transform_data_matrix = transform_data.Matrix()
7 
8 print( transform_data_matrix.GetRow(0)[0] ) 
9 print( transform_data_matrix.GetRow(0)[1] )

IsIdentity (self)

Check if this transform is equal to identity transform. Identity transform corresponds to "no transform" - the object is perfectly aligned with the world or parent axes and positioned at the origin.

Returns

True if the transform is equal to identity transform, else False - bool
1 matrix4 = RLPy.RMatrix4( 1, 0, 0, 0,
2                          0, 1, 0, 0,
3                          0, 0, 1, 0,
4                          0, 0, 0, 1 )
5 transform_data = RLPy.RTransform().From( matrix4 )
6 print( transform_data.IsIdentity() ) # True

Scale (self)

Form a scale matrix from this transform.

Returns

A 3x3 scale matrix from this transform - RMatrix3
1 scale = RLPy.RVector3( 4, 5, 6 )
2 matrix4 = RLPy.RMatrix4().FromRTS( RLPy.RMatrix3.IDENTITY,
3                                        RLPy.RVector3.UNIT_XYZ,
4                                        scale )
5 transform_data = RLPy.RTransform().From( matrix4 )
6 
7 print( transform_data.Scale().GetRow(0)[0] ) # 4
8 print( transform_data.Scale().GetRow(1)[1] ) # 5
9 print( transform_data.Scale().GetRow(2)[2] ) # 6

Rotate (self)

Form a rotate matrix from this transform.

Returns

A 3x3 rotate matrix from this transform - RMatrix3
1 rotate = RLPy.RMatrix3( 0.8137977, -0.4698463,  0.3420202,
2                            0.5438381,  0.8231729, -0.1631759,
3                           -0.2048741,  0.3187958,  0.9254166 )
4 matrix4  = RLPy.RMatrix4().FromRTS( [[#Rotate (self)|Rotate]], RLPy.RVector3.UNIT_XYZ , RLPy.RVector3.UNIT_XYZ )
5     transform_data = RLPy.RTransform().From( matrix4 )
6 
7 print( transform_data.Rotate().GetRow(0)[0] )
8 print( transform_data.Rotate().GetRow(0)[1] )
9 print( transform_data.Rotate().GetRow(0)[2] )

GetSR (self)

Form a 3x3 matrix with rotation and scale from this transform.

Returns

A 3x3 matrix from this transform - RMatrix3
 1 scale  = RLPy.RVector3( 2, 2, 2 )
 2 rotate = RLPy.RMatrix3( -0,-0, 1,
 3                         -1,-0, 0,
 4                         0,-1,-0 )
 5 matrix4 = RLPy.RMatrix4().FromRTS( [[#Rotate (self)|Rotate]], RLPy.RVector3.UNIT_XYZ , scale )
 6 transform_data = RLPy.RTransform().From( matrix4 )
 7 
 8 print( transform_data.GetSR().GetRow(0)[0] ) # -0*2 = 0
 9 print( transform_data.GetSR().GetRow(0)[1] ) # -0*2 = 0
10 print( transform_data.GetSR().GetRow(0)[2] ) #  1*2 = 2