Difference between revisions of "IC Python API:RLPy RVector3"

From Reallusion Wiki!
Jump to: navigation, search
m
m
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
{{TOC}}
 
{{TOC}}
 
{{Parent|IC_Python_API:RL_Python_Modules|Modules}}
 
{{Parent|IC_Python_API:RL_Python_Modules|Modules}}
== Detailed Description ==
+
{{last_modified}}
This class represent the 3D vector.
+
==Member Functions==
+
  
===AlmostTheSame===
+
== Description ==
<syntaxhighlight lang="Python">
+
 
RLPy.RVector3.AlmostTheSame ( self, vV )
+
This class represent the 3D vector (x, y, z).  This class provides access to RLPy's internal 3D vector math library allowing 3D vectors to be handled easily, in a manner compatible with internal RLPy data structures. It also supports operators and provides some constants for your convenience:
 +
 
 +
{|class = "wikitable"
 +
!Constant
 +
!Description
 +
|-
 +
|RVector3.ZERO
 +
|3D zero vector: (0, 0, 0)
 +
|-
 +
|RVector3.UNIT_X
 +
|3D x unit vector: (1, 0, 0)
 +
|-
 +
|RVector3.UNIT_Y
 +
|3D y unit vector: (0, 1, 0)
 +
|-
 +
|RVector3.UNIT_Z
 +
|3D z unit vector: (0, 0, 1)
 +
|-
 +
|RVector3.UNIT_XY
 +
|3D vector: (1, 1, 0)
 +
|-
 +
|RVector3.UNIT_YZ
 +
|3D vector: (0, 1, 1)
 +
|-
 +
|RVector3.UNIT_XZ
 +
|3D vector: (1, 0, 1)
 +
|-
 +
|RVector3.UNIT_XYZ
 +
|3D vector: (1, 1, 1)
 +
|}
 +
 
 +
== Constructor & Destructor ==
 +
 
 +
=== __init__ ( self ) ===
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3()
 
</syntaxhighlight>
 
</syntaxhighlight>
Determine the two vectors are the same with tolerance.
+
 
====Returns====
+
=== __init__ ( self, x, y, z ) ===
:True if the vector is almost the same - bool
+
 
-----
+
==== Parameters ====
===AlmostZero===
+
:'''x''' [IN] A numerical value for x coordinate - float or int
<syntaxhighlight lang="Python">
+
:'''y''' [IN] A numerical value for y coordinate - float or int
RLPy.RVector3.AlmostZero ( self)
+
:'''z''' [IN] A numerical value for z coordinate - float or int
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(1, 2, 3)
 
</syntaxhighlight>
 
</syntaxhighlight>
Determine the vector is zero vector.
+
 
====Returns====
+
=== __init__ ( self, args ) ===
:True if the vector is zero vector - bool
+
 
-----
+
The constructor. Initialize a new [[IC_Python_API:RLPy_RVector3|RVector3]]object with another [[IC_Python_API:RLPy_RVector3|RVector3]]object: args. This new [[IC_Python_API:RLPy_RVector3|RVector3]]object has the same value as args.
===Cross===
+
 
<syntaxhighlight lang="Python">
+
==== Parameters ====
RLPy.RVector3.Cross ( self, vV )
+
:'''args''' [IN] a [[IC_Python_API:RLPy_RVector3|RVector3]]object - [[IC_Python_API:RLPy_RVector3|RVector3]]
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(1, 2, 3)
 +
b = RLPy.RVector3(a)
 
</syntaxhighlight>
 
</syntaxhighlight>
Calculate cross production of the two vectors.
+
 
====Parameters====
+
== Operators ==
:vV[IN] The vector - RLPy.RVector3
+
 
====Returns====
+
=== == ===
:New vector which is the cross product of the two vectors - RLPy.RVector3
+
 
-----
+
The "equal to" operator.
===Distance===
+
 
<syntaxhighlight lang="Python">
+
See Also: [[#!=|!=]]
RLPy.RVector3.Distance ( self, vV )
+
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(1, 2, 3)
 +
b = a
 +
 
 +
print(a == b) #True
 
</syntaxhighlight>
 
</syntaxhighlight>
Distance of the two vectors.
+
 
====Parameters====
+
=== != ===
:vV[IN] The vector - RLPy.RVector3
+
 
====Returns====
+
The "not equal to" operator.
:The distance - float
+
 
-----
+
See Also: [[#==|==]]
===Dot===
+
 
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python" line='line'>
RLPy.RVector3.Dot ( self, vV )
+
a = RLPy.RVector3()
 +
b = RLPy.RVector3(1, 2, 3)
 +
 
 +
print(a != b) #True
 
</syntaxhighlight>
 
</syntaxhighlight>
Calculate dot production of the two vectors.
+
 
====Parameters====
+
=== < ===
:vV[IN] The vector - RLPy.RVector3
+
 
====Returns====
+
The "less than" operator. Similar to string comparison: Returns '''True''' upon the first match that is less than and '''False''' if it is greater than.  If the current comparison is equal, continue onto the next element.  If all elements are equal then return '''False'''.
:The value of the dot production - float
+
 
-----
+
See Also: [[#<=|<=]]
===Interpolate===
+
 
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python" line='line'>
RLPy.RVector3.Interpolate ( self, vRatio, vV )
+
a = RLPy.RVector3(0, 1, 5)
 +
b = RLPy.RVector3(0, 2, 0)
 +
c = RLPy.RVector3(1, 0, 1)
 +
d = RLPy.RVector3(0, 1, 5)
 +
 
 +
print(a < b) #True
 +
print(b < c) #True
 +
print(a < d) #False
 
</syntaxhighlight>
 
</syntaxhighlight>
Interpolate of the two vectors.
+
 
====Parameters====
+
=== > ===
:vRatio[IN] ratio value - float
+
 
:vV[IN] The vector - RLPy.RVector3
+
The "greater than" operator. Similar to string comparison: Returns '''True''' upon the first match that is greater than and '''False''' if it is less than.  If the current comparison is equal, continue onto the next element.  If all elements are equal then return '''False'''.
====Returns====
+
 
:New vector which is the cross product of the two vectors - RLPy.RVector3
+
See Also: [[#>=|>=]]
-----
+
 
===Inverse===
+
<syntaxhighlight lang="python" line='line'>
<syntaxhighlight lang="Python">
+
a = RLPy.RVector3(0, 1, 5)
RLPy.RVector3.Inverse ( self)
+
b = RLPy.RVector3(0, 1, 7)
 +
c = RLPy.RVector3(1, 0, 1)
 +
d = RLPy.RVector3(0, 1, 5)
 +
 
 +
print(b > a) #True
 +
print(c > b) #True
 +
print(d > a) #False
 
</syntaxhighlight>
 
</syntaxhighlight>
Inverse this vector.
+
 
====Returns====
+
=== <= ===
:The inversed vector - RLPy.RVector3
+
 
-----
+
The "less than or equal" operator. Similar to string comparison: Returns '''True''' upon the first match that is less than and '''False''' if it is greater than.  If the current comparison is equal, continue onto the next element.  If all elements are equal then return '''True'''.
===Length===
+
 
<syntaxhighlight lang="Python">
+
See Also: [[#<|<]]
RLPy.RVector3.Length ( self)
+
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(0, 1, 5)
 +
b = RLPy.RVector3(0, 2, 0)
 +
c = RLPy.RVector3(1, 0, 1)
 +
d = RLPy.RVector3(0, 1, 5)
 +
 
 +
print(a<= b) #True
 +
print(b<= c) #True
 +
print(a<= d) #True
 
</syntaxhighlight>
 
</syntaxhighlight>
Length of the vector.
+
 
====Returns====
+
=== >= ===
:The length of this vector - float
+
 
-----
+
The "greater than or equal" operator. Similar to string comparison: Returns '''True''' upon the first match that is greater than and '''False''' if it is less than.  If the current comparison is equal, continue onto the next element.  If all elements are equal then return '''True'''.
===Normalize===
+
 
<syntaxhighlight lang="Python">
+
See Also: [[#>|>]]
RLPy.RVector3.Normalize ( self)
+
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(0, 1, 5)
 +
b = RLPy.RVector3(0, 1, 7)
 +
c = RLPy.RVector3(1, 0, 1)
 +
d = RLPy.RVector3(0, 1, 5)
 +
 
 +
print(b >= a) #True
 +
print(c >= b) #True
 +
print(d >= a) #True
 
</syntaxhighlight>
 
</syntaxhighlight>
Normalizes this vector.
+
 
====Returns====
+
=== + ===
:The normalized vector - float
+
 
-----
+
The "addition" operator. Perform 3D vector addition.
===SetX===
+
 
<syntaxhighlight lang="Python">
+
See Also: [[#+=|+=]]
RLPy.RVector3.SetX ( self, tX )
+
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(0, 1, 2)
 +
b = RLPy.RVector3(1, 2, 3)
 +
c = a + b
 +
 
 +
print(str(c.x) + ', ' + str(c.y) + ', ' + str(c.z)) #1.0, 3.0, 5.0
 
</syntaxhighlight>
 
</syntaxhighlight>
Set the value of the x-axis.
+
 
====Parameters====
+
=== - ===
:tX[IN] the value of the x-axis - float
+
 
-----
+
The "subtraction" operator. Perform 3D vector subtraction.
===SetXYZ===
+
 
<syntaxhighlight lang="Python">
+
See Also: [[#-=|-=]]
RLPy.RVector3.SetXYZ ( self, tX, tY, tZ )
+
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(0, 1, 2)
 +
b = RLPy.RVector3(3, 2, 1)
 +
c = b - a
 +
 
 +
print(str(c.x) + ', ' + str(c.y) + ', ' + str(c.z)) #3.0, 1.0, -1.0
 
</syntaxhighlight>
 
</syntaxhighlight>
Set the value of the all axes.
+
 
====Parameters====
+
=== * ===
:tX[IN] the value of the x-axis - float
+
 
:tY[IN] the value of the y-axis - float
+
The "multiplication" operator. Perform a scalar multiplication when the second operand is an integer or float. If the second operand is another 3D vector, then the respective x, y, z elements are multiplied.
:tZ[IN] the value of the z-axis - float
+
 
-----
+
See Also: [[#*=|*=]]
===SetY===
+
 
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python" line='line'>
RLPy.RVector3.SetY ( self, tY )
+
a = RLPy.RVector3(1, 2, 3)
 +
b = a * 2
 +
c = a * a
 +
 
 +
print(str(b.x) + ', ' + str(b.y) + ', ' + str(b.z)) #2.0, 4.0, 6.0
 +
print(str(c.x) + ', ' + str(c.y) + ', ' + str(c.z)) #1.0, 4.0, 9.0
 
</syntaxhighlight>
 
</syntaxhighlight>
Set the value of the y-axis.
+
 
====Parameters====
+
=== / ===
:tX[IN] the value of the y-axis.
+
 
-----
+
The "division" operator. Perform a scalar division when the second operand is an integer or float. If the second operand is another 3D vector, then the respective x, y, z elements are divided.
===SetZ===
+
 
<syntaxhighlight lang="Python">
+
See Also: [[#/=|/=]]
RLPy.RVector3.SetZ ( self, tZ )
+
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(1, 2, 3)
 +
b = a / 2
 +
c = RLPy.RVector3(2, 2, 10)
 +
d = a / c
 +
 
 +
print(str(b.x) + ', ' + str(b.y) + ', ' + str(b.z)) #0.5, 1.0, 1.5
 +
print(str(d.x) + ', ' + str(d.y) + ', ' + str(d.z)) #0.5, 1.0, 0.3
 
</syntaxhighlight>
 
</syntaxhighlight>
Set the value of the z-axis.
+
 
====Parameters====
+
=== - ===
:tX[IN] the value of the z-axis.
+
 
-----
+
The "unary minus" operator. Inverse the sign of each element.
===SquaredDistance===
+
 
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python" line='line'>
RLPy.RVector3.SquaredDistance ( self, vV )
+
a = RLPy.RVector3(1, 2, 3)
 +
b = -a
 +
 
 +
print(str(b.x) + ', ' + str(b.y) + ', ' + str(b.z)) #-1.0, -2.0, -3.0
 
</syntaxhighlight>
 
</syntaxhighlight>
Squared distance of the two vectors.
+
 
====Parameters====
+
=== += ===
:vV[IN] The vector - RLPy.RVector3
+
 
====Returns====
+
The "addition assignment" operator.
:The Squared distance - float
+
 
-----
+
See Also: [[#+|+]]
===SquaredLength===
+
 
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python" line='line'>
RLPy.RVector3.SquaredLength ( self)
+
a = RLPy.RVector3(0, 1, 2)
 +
b = RLPy.RVector3(1, 2, 3)
 +
a += b
 +
 
 +
print(str(a.x) + ', ' + str(a.y)+ ', ' + str(a.z)) #1.0, 3.0, 5.0
 
</syntaxhighlight>
 
</syntaxhighlight>
Squared length of the vector.
+
 
====Returns====
+
=== -= ===
:The squared length of this vector - float
+
 
-----
+
The "subtraction assignment" operator.
===X===
+
 
<syntaxhighlight lang="Python">
+
See Also: [[#-|-]]
RLPy.RVector3.X ( self, args )
+
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(0, 1, 4)
 +
b = RLPy.RVector3(1, 2, 3)
 +
a -= b
 +
 
 +
print(str(a.x) + ', ' + str(a.y) + ', ' + str(a.z)) #-1.0, -1.0, 1.0
 
</syntaxhighlight>
 
</syntaxhighlight>
Get the value of the x-axis.
+
 
====Returns====
+
=== *= ===
:The value of the x-axis - float
+
 
-----
+
The "multiplication assignment" operator. For calculation method, refer to the '''*''' operator.
===XY===
+
 
<syntaxhighlight lang="Python">
+
See Also: [[#*|*]]
RLPy.RVector3.XY ( self)
+
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(1, 2, 3)
 +
a *= 2
 +
b = RLPy.RVector3(1, 2, 3)
 +
c = RLPy.RVector3(2, 3, 4)
 +
b *= c
 +
 
 +
print(str(a.x) + ', ' + str(a.y) + ', ' + str(a.z)) #2.0, 4.0, 6.0
 +
print(str(b.x) + ', ' + str(b.y) + ', ' + str(b.z)) #2.0, 6.0, 12.0
 
</syntaxhighlight>
 
</syntaxhighlight>
Get the element of the 2D vector.
+
 
====Returns====
+
=== /= ===
:Return the 2D vector - RLPy.RVector2
+
 
-----
+
The "division assignment" operator. For calculation method, refer to the '''/''' operator.
===Y===
+
 
<syntaxhighlight lang="Python">
+
See Also: [[#/|/]]
RLPy.RVector3.Y ( self, args )
+
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(1, 2, 3)
 +
a /= 2
 +
b = RLPy.RVector3(1, 2, 3)
 +
c = RLPy.RVector3(2, 4, 2)
 +
b /= c
 +
 
 +
print(str(a.x) + ', ' + str(a.y) + ', ' + str(a.z)) #0.5, 1.0, 1.5
 +
print(str(b.x) + ', ' + str(b.y) + ', ' + str(b.z)) #0.5, 0.5, 1.5
 
</syntaxhighlight>
 
</syntaxhighlight>
Get the value of the y-axis.
+
 
====Returns====
+
== Member Functions ==
:The value of the y-axis - float
+
 
-----
+
=== AlmostTheSame ( self, vV ) ===
===Z===
+
 
<syntaxhighlight lang="Python">
+
Determine if this and another 3D vector is the equivalent withing a tolerance.
RLPy.RVector3.Z ( self, args )
+
 
 +
==== Returns ====
 +
:'''True''' if the 3D vectors are almost the same, else '''False''' - bool
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(1, 2, 3)
 +
b = RLPy.RVector3(1, 2, 3.000000001)
 +
c = RLPy.RVector3(1, 2, 3.00001)
 +
 
 +
if a.AlmostTheSame(b):  #True
 +
    print("a ≈ b")
 +
if a.AlmostTheSame(c):  #False
 +
    print("a ≈ c")
 +
</syntaxhighlight>
 +
 
 +
=== AlmostZero ( self ) ===
 +
 
 +
Determine if this 3D vector is a zeroed 3D vector.
 +
 
 +
==== Returns ====
 +
:'''True''' if this 3D vector is a zeroed 3D vector, else '''False''' - bool
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(0.00000001, 0, 0.00000003)
 +
b = RLPy.RVector3(0.00001, 0, 0)
 +
 
 +
if a.AlmostZero():                #True
 +
    print("a is ZERO vector.")
 +
if b.AlmostZero():                #False
 +
    print("a is ZERO vector.")
 +
</syntaxhighlight>
 +
 
 +
=== Cross ( self, vV ) ===
 +
 
 +
Calculate the cross production of this and another 3D vector.
 +
 
 +
==== Parameters ====
 +
:'''vV''' [IN] The vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
 +
 
 +
==== Returns ====
 +
:New 3D vector which is the cross product of this and another 3D vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(1, 0, 0)
 +
b = RLPy.RVector3(0, 1, 0)
 +
c = a.Cross(b)
 +
 
 +
print(str(c.x) + ', ' + str(c.y) + ', ' + str(c.z))  # 0.0, 0.0, 1.0
 +
</syntaxhighlight>
 +
 
 +
=== Distance ( self, vV ) ===
 +
 
 +
Calculate the distance between this and another 3D vector.
 +
 
 +
==== Parameters ====
 +
:'''vV''' [IN] The vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
 +
 
 +
==== Returns ====
 +
:The distance between this and another 3D vector - float
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(3, 0, 0)
 +
b = RLPy.RVector3(0, 4, 0)
 +
 
 +
print(a.Distance(b))    # 5.0
 +
</syntaxhighlight>
 +
 
 +
=== Dot (self, vV) ===
 +
 
 +
Calculate the dot production of this and another 3D vector.
 +
 
 +
==== Parameters ====
 +
:'''vV''' [IN] The 3D vector with which to compute the dot product - [[IC_Python_API:RLPy_RVector3|RVector3]]
 +
 
 +
==== Returns ====
 +
:The value of the dot product - float
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(1, 2, 3)
 +
b = RLPy.RVector3(1, 2, 3)
 +
 
 +
print(a.Dot(b)) # 14.0
 +
</syntaxhighlight>
 +
 
 +
=== Interpolate ( self, vRatio, vV ) ===
 +
 
 +
Calculate the interpolate of this and another 3D vector.
 +
 
 +
==== Parameters ====
 +
:'''vRatio''' [IN] ratio value - float
 +
:'''vV''' [IN] Another 3D vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
 +
 
 +
==== Returns ====
 +
:New vector which is the cross product this and another vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(10, 20, 30)
 +
b = RLPy.RVector3(1, 2, 3)
 +
c = a.Interpolate(0.1, b)
 +
 
 +
print(str(c.x) + ', ' + str(c.y) + ', ' + str(c.z))  # 9.100000381469727, 18.200000762939453, 27.299999237060547
 +
</syntaxhighlight>
 +
 
 +
=== Inverse ( self ) ===
 +
 
 +
Invert all the elements of this 3D vector.
 +
 
 +
==== Returns ====
 +
:The inverse of this 3D vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(1, 2, 3)
 +
b = a.Inverse()
 +
print(str(b.x) + ', ' + str(b.y) + ', ' + str(b.z))  # 1.0, 0.5, 0.3333333432674408
 +
</syntaxhighlight>
 +
 
 +
=== Length ( self )===
 +
 
 +
Length of the vector.
 +
 
 +
==== Returns ====
 +
:Length of this vector - float
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(1, 1, 1)
 +
 
 +
print(a.Length())  # 1.7320507764816284
 +
</syntaxhighlight>
 +
 
 +
=== Normalize ( self ) ===
 +
 
 +
Normalize this 3D vector.
 +
 
 +
==== Returns ====
 +
:The normalized 3D vector - float
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(1, 1, 1)
 +
 
 +
print(a.Normalize())    #1.7320507764816284
 +
print(str(a.x) + ', ' + str(a.y) + ', ' + str(a.z))  # 0.5773502588272095, 0.5773502588272095, 0.5773502588272095
 +
</syntaxhighlight>
 +
 
 +
=== SetX ( self, tX ) ===
 +
 
 +
Set the value of the x-axis for this 3D vector.
 +
 
 +
==== Parameters ====
 +
:'''tX''' [IN] The value of the x-axis - float
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(1, 1, 1)
 +
a.SetX(10)
 +
 
 +
print(str(a.x) + ', ' + str(a.y) + ', ' + str(a.z))  # 10.0, 1.0, 1.0
 +
</syntaxhighlight>
 +
 
 +
=== SetXYZ ( self, tX, tY, tZ ) ===
 +
 
 +
Set the value of the all axes for this 3D vector.
 +
 
 +
==== Parameters ====
 +
:'''tX''' [IN] The value of the x-axis - float
 +
:'''tY''' [IN] The value of the y-axis - float
 +
:'''tZ''' [IN] The value of the z-axis - float
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(1, 1, 1)
 +
a.SetXYZ(10, 20, 30)
 +
 
 +
print(str(a.x) + ', ' + str(a.y) + ', ' + str(a.z)) # 10.0, 20.0, 30.0
 +
</syntaxhighlight>
 +
 
 +
=== SetY ( self, tY ) ===
 +
 
 +
Set the value of the y-axis for this 3D vector.
 +
 
 +
==== Parameters ====
 +
:'''tX''' [IN] the value of the y-axis.
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(1, 1, 1)
 +
a.SetY(10)
 +
 
 +
print(str(a.x) + ', ' + str(a.y) + ', ' + str(a.z))  # 1.0, 10.0, 1.0
 +
</syntaxhighlight>
 +
 
 +
=== SetZ ( self, tZ ) ===
 +
 
 +
Set the value of the z-axis for this 3D vector.
 +
 
 +
==== Parameters ====
 +
:tX[IN] The value for the z-axis.
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(1, 1, 1)
 +
a.SetZ(10)
 +
 
 +
print(str(a.x) + ', ' + str(a.y) + ', ' + str(a.z))  # 1.0, 1.0, 10.0
 +
</syntaxhighlight>
 +
 
 +
=== SquaredDistance ( self, vV ) ===
 +
 
 +
Get the squared distance between this and another 3D vector.
 +
 
 +
==== Parameters ====
 +
:'''vV''' [IN] The vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
 +
 
 +
==== Returns ====
 +
:The squared distance of this and another 3D vector - float
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(1, 1, 1)
 +
 
 +
print(a.SquaredLength())        # 3.0
 +
</syntaxhighlight>
 +
 
 +
=== SquaredLength ( self ) ===
 +
 
 +
Get the squared length of this 3D vector.
 +
 
 +
==== Returns ====
 +
:The squared length of this vector - float
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(1, 1, 1)
 +
 
 +
print(a.SquaredLength())    # 3.0
 +
</syntaxhighlight>
 +
 
 +
=== XY ( self ) ===
 +
 
 +
Get the x and y elements of this 3D vector.
 +
 
 +
==== Returns ====
 +
:A 2D vector composed of this 3D vector's x and y elements - [[IC_Python_API:RLPy_RVector2|RVector2]]
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
a = RLPy.RVector3(1, 2, 3)
 +
b = a.XY()
 +
 
 +
print(str(b.x) + ', ' + str(b.y))  # 1.0, 2.0
 
</syntaxhighlight>
 
</syntaxhighlight>
Get the value of the z-axis.
 
====Returns====
 
:The value of the z-axis - float
 

Latest revision as of 18:55, 13 April 2020

Main article: Modules.
Last modified: 04/13/2020

Description

This class represent the 3D vector (x, y, z). This class provides access to RLPy's internal 3D vector math library allowing 3D vectors to be handled easily, in a manner compatible with internal RLPy data structures. It also supports operators and provides some constants for your convenience:

Constant Description
RVector3.ZERO 3D zero vector: (0, 0, 0)
RVector3.UNIT_X 3D x unit vector: (1, 0, 0)
RVector3.UNIT_Y 3D y unit vector: (0, 1, 0)
RVector3.UNIT_Z 3D z unit vector: (0, 0, 1)
RVector3.UNIT_XY 3D vector: (1, 1, 0)
RVector3.UNIT_YZ 3D vector: (0, 1, 1)
RVector3.UNIT_XZ 3D vector: (1, 0, 1)
RVector3.UNIT_XYZ 3D vector: (1, 1, 1)

Constructor & Destructor

__init__ ( self )

1 a = RLPy.RVector3()

__init__ ( self, x, y, z )

Parameters

x [IN] A numerical value for x coordinate - float or int
y [IN] A numerical value for y coordinate - float or int
z [IN] A numerical value for z coordinate - float or int
1 a = RLPy.RVector3(1, 2, 3)

__init__ ( self, args )

The constructor. Initialize a new RVector3object with another RVector3object: args. This new RVector3object has the same value as args.

Parameters

args [IN] a RVector3object - RVector3
1 a = RLPy.RVector3(1, 2, 3)
2 b = RLPy.RVector3(a)

Operators

==

The "equal to" operator.

See Also: !=

1 a = RLPy.RVector3(1, 2, 3)
2 b = a
3 
4 print(a == b) #True

!=

The "not equal to" operator.

See Also: ==

1 a = RLPy.RVector3()
2 b = RLPy.RVector3(1, 2, 3)
3 
4 print(a != b) #True

<

The "less than" operator. Similar to string comparison: Returns True upon the first match that is less than and False if it is greater than. If the current comparison is equal, continue onto the next element. If all elements are equal then return False.

See Also: <=

1 a = RLPy.RVector3(0, 1, 5)
2 b = RLPy.RVector3(0, 2, 0)
3 c = RLPy.RVector3(1, 0, 1)
4 d = RLPy.RVector3(0, 1, 5)
5 
6 print(a < b) #True
7 print(b < c) #True
8 print(a < d) #False

>

The "greater than" operator. Similar to string comparison: Returns True upon the first match that is greater than and False if it is less than. If the current comparison is equal, continue onto the next element. If all elements are equal then return False.

See Also: >=

1 a = RLPy.RVector3(0, 1, 5)
2 b = RLPy.RVector3(0, 1, 7)
3 c = RLPy.RVector3(1, 0, 1)
4 d = RLPy.RVector3(0, 1, 5)
5 
6 print(b > a) #True
7 print(c > b) #True
8 print(d > a) #False

<=

The "less than or equal" operator. Similar to string comparison: Returns True upon the first match that is less than and False if it is greater than. If the current comparison is equal, continue onto the next element. If all elements are equal then return True.

See Also: <

1 a = RLPy.RVector3(0, 1, 5)
2 b = RLPy.RVector3(0, 2, 0)
3 c = RLPy.RVector3(1, 0, 1)
4 d = RLPy.RVector3(0, 1, 5)
5 
6 print(a<= b) #True
7 print(b<= c) #True
8 print(a<= d) #True

>=

The "greater than or equal" operator. Similar to string comparison: Returns True upon the first match that is greater than and False if it is less than. If the current comparison is equal, continue onto the next element. If all elements are equal then return True.

See Also: >

1 a = RLPy.RVector3(0, 1, 5)
2 b = RLPy.RVector3(0, 1, 7)
3 c = RLPy.RVector3(1, 0, 1)
4 d = RLPy.RVector3(0, 1, 5)
5 
6 print(b >= a) #True
7 print(c >= b) #True
8 print(d >= a) #True

+

The "addition" operator. Perform 3D vector addition.

See Also: +=

1 a = RLPy.RVector3(0, 1, 2)
2 b = RLPy.RVector3(1, 2, 3)
3 c = a + b
4 
5 print(str(c.x) + ', ' + str(c.y) + ', ' + str(c.z)) #1.0, 3.0, 5.0

-

The "subtraction" operator. Perform 3D vector subtraction.

See Also: -=

1 a = RLPy.RVector3(0, 1, 2)
2 b = RLPy.RVector3(3, 2, 1)
3 c = b - a
4 
5 print(str(c.x) + ', ' + str(c.y) + ', ' + str(c.z)) #3.0, 1.0, -1.0

*

The "multiplication" operator. Perform a scalar multiplication when the second operand is an integer or float. If the second operand is another 3D vector, then the respective x, y, z elements are multiplied.

See Also: *=

1 a = RLPy.RVector3(1, 2, 3)
2 b = a * 2
3 c = a * a
4 
5 print(str(b.x) + ', ' + str(b.y) + ', ' + str(b.z)) #2.0, 4.0, 6.0
6 print(str(c.x) + ', ' + str(c.y) + ', ' + str(c.z)) #1.0, 4.0, 9.0

/

The "division" operator. Perform a scalar division when the second operand is an integer or float. If the second operand is another 3D vector, then the respective x, y, z elements are divided.

See Also: /=

1 a = RLPy.RVector3(1, 2, 3)
2 b = a / 2
3 c = RLPy.RVector3(2, 2, 10)
4 d = a / c
5 
6 print(str(b.x) + ', ' + str(b.y) + ', ' + str(b.z)) #0.5, 1.0, 1.5
7 print(str(d.x) + ', ' + str(d.y) + ', ' + str(d.z)) #0.5, 1.0, 0.3

-

The "unary minus" operator. Inverse the sign of each element.

1 a = RLPy.RVector3(1, 2, 3)
2 b = -a
3 
4 print(str(b.x) + ', ' + str(b.y) + ', ' + str(b.z)) #-1.0, -2.0, -3.0

+=

The "addition assignment" operator.

See Also: +

1 a = RLPy.RVector3(0, 1, 2)
2 b = RLPy.RVector3(1, 2, 3)
3 a += b
4 
5 print(str(a.x) + ', ' + str(a.y)+ ', ' + str(a.z)) #1.0, 3.0, 5.0

-=

The "subtraction assignment" operator.

See Also: -

1 a = RLPy.RVector3(0, 1, 4)
2 b = RLPy.RVector3(1, 2, 3)
3 a -= b
4 
5 print(str(a.x) + ', ' + str(a.y) + ', ' + str(a.z)) #-1.0, -1.0, 1.0

*=

The "multiplication assignment" operator. For calculation method, refer to the * operator.

See Also: *

1 a = RLPy.RVector3(1, 2, 3)
2 a *= 2
3 b = RLPy.RVector3(1, 2, 3)
4 c = RLPy.RVector3(2, 3, 4)
5 b *= c
6 
7 print(str(a.x) + ', ' + str(a.y) + ', ' + str(a.z)) #2.0, 4.0, 6.0
8 print(str(b.x) + ', ' + str(b.y) + ', ' + str(b.z)) #2.0, 6.0, 12.0

/=

The "division assignment" operator. For calculation method, refer to the / operator.

See Also: /

1 a = RLPy.RVector3(1, 2, 3)
2 a /= 2
3 b = RLPy.RVector3(1, 2, 3)
4 c = RLPy.RVector3(2, 4, 2)
5 b /= c
6 
7 print(str(a.x) + ', ' + str(a.y) + ', ' + str(a.z)) #0.5, 1.0, 1.5
8 print(str(b.x) + ', ' + str(b.y) + ', ' + str(b.z)) #0.5, 0.5, 1.5

Member Functions

AlmostTheSame ( self, vV )

Determine if this and another 3D vector is the equivalent withing a tolerance.

Returns

True if the 3D vectors are almost the same, else False - bool
1 a = RLPy.RVector3(1, 2, 3)
2 b = RLPy.RVector3(1, 2, 3.000000001)
3 c = RLPy.RVector3(1, 2, 3.00001)
4 
5 if a.AlmostTheSame(b):  #True
6     print("a ≈ b")
7 if a.AlmostTheSame(c):  #False
8     print("a ≈ c")

AlmostZero ( self )

Determine if this 3D vector is a zeroed 3D vector.

Returns

True if this 3D vector is a zeroed 3D vector, else False - bool
1 a = RLPy.RVector3(0.00000001, 0, 0.00000003)
2 b = RLPy.RVector3(0.00001, 0, 0)
3 
4 if a.AlmostZero():                 #True
5     print("a is ZERO vector.")
6 if b.AlmostZero():                 #False
7     print("a is ZERO vector.")

Cross ( self, vV )

Calculate the cross production of this and another 3D vector.

Parameters

vV [IN] The vector - RVector3

Returns

New 3D vector which is the cross product of this and another 3D vector - RVector3
1 a = RLPy.RVector3(1, 0, 0)
2 b = RLPy.RVector3(0, 1, 0)
3 c = a.Cross(b)
4 
5 print(str(c.x) + ', ' + str(c.y) + ', ' + str(c.z))   # 0.0, 0.0, 1.0

Distance ( self, vV )

Calculate the distance between this and another 3D vector.

Parameters

vV [IN] The vector - RVector3

Returns

The distance between this and another 3D vector - float
1 a = RLPy.RVector3(3, 0, 0)
2 b = RLPy.RVector3(0, 4, 0)
3 
4 print(a.Distance(b))    # 5.0

Dot (self, vV)

Calculate the dot production of this and another 3D vector.

Parameters

vV [IN] The 3D vector with which to compute the dot product - RVector3

Returns

The value of the dot product - float
1 a = RLPy.RVector3(1, 2, 3)
2 b = RLPy.RVector3(1, 2, 3)
3 
4 print(a.Dot(b)) # 14.0

Interpolate ( self, vRatio, vV )

Calculate the interpolate of this and another 3D vector.

Parameters

vRatio [IN] ratio value - float
vV [IN] Another 3D vector - RVector3

Returns

New vector which is the cross product this and another vector - RVector3
1 a = RLPy.RVector3(10, 20, 30)
2 b = RLPy.RVector3(1, 2, 3)
3 c = a.Interpolate(0.1, b)
4 
5 print(str(c.x) + ', ' + str(c.y) + ', ' + str(c.z))   # 9.100000381469727, 18.200000762939453, 27.299999237060547

Inverse ( self )

Invert all the elements of this 3D vector.

Returns

The inverse of this 3D vector - RVector3
1 a = RLPy.RVector3(1, 2, 3)
2 b = a.Inverse()
3 print(str(b.x) + ', ' + str(b.y) + ', ' + str(b.z))  # 1.0, 0.5, 0.3333333432674408

Length ( self )

Length of the vector.

Returns

Length of this vector - float
1 a = RLPy.RVector3(1, 1, 1)
2 
3 print(a.Length())   # 1.7320507764816284

Normalize ( self )

Normalize this 3D vector.

Returns

The normalized 3D vector - float
1 a = RLPy.RVector3(1, 1, 1)
2 
3 print(a.Normalize())    #1.7320507764816284
4 print(str(a.x) + ', ' + str(a.y) + ', ' + str(a.z))   # 0.5773502588272095, 0.5773502588272095, 0.5773502588272095

SetX ( self, tX )

Set the value of the x-axis for this 3D vector.

Parameters

tX [IN] The value of the x-axis - float
1 a = RLPy.RVector3(1, 1, 1)
2 a.SetX(10)
3 
4 print(str(a.x) + ', ' + str(a.y) + ', ' + str(a.z))  # 10.0, 1.0, 1.0

SetXYZ ( self, tX, tY, tZ )

Set the value of the all axes for this 3D vector.

Parameters

tX [IN] The value of the x-axis - float
tY [IN] The value of the y-axis - float
tZ [IN] The value of the z-axis - float
1 a = RLPy.RVector3(1, 1, 1)
2 a.SetXYZ(10, 20, 30)
3 
4 print(str(a.x) + ', ' + str(a.y) + ', ' + str(a.z)) # 10.0, 20.0, 30.0

SetY ( self, tY )

Set the value of the y-axis for this 3D vector.

Parameters

tX [IN] the value of the y-axis.
1 a = RLPy.RVector3(1, 1, 1)
2 a.SetY(10)
3 
4 print(str(a.x) + ', ' + str(a.y) + ', ' + str(a.z))  # 1.0, 10.0, 1.0

SetZ ( self, tZ )

Set the value of the z-axis for this 3D vector.

Parameters

tX[IN] The value for the z-axis.
1 a = RLPy.RVector3(1, 1, 1)
2 a.SetZ(10)
3 
4 print(str(a.x) + ', ' + str(a.y) + ', ' + str(a.z))  # 1.0, 1.0, 10.0

SquaredDistance ( self, vV )

Get the squared distance between this and another 3D vector.

Parameters

vV [IN] The vector - RVector3

Returns

The squared distance of this and another 3D vector - float
1 a = RLPy.RVector3(1, 1, 1)
2 
3 print(a.SquaredLength())        # 3.0

SquaredLength ( self )

Get the squared length of this 3D vector.

Returns

The squared length of this vector - float
1 a = RLPy.RVector3(1, 1, 1)
2 
3 print(a.SquaredLength())    # 3.0

XY ( self )

Get the x and y elements of this 3D vector.

Returns

A 2D vector composed of this 3D vector's x and y elements - RVector2
1 a = RLPy.RVector3(1, 2, 3)
2 b = a.XY()
3 
4 print(str(b.x) + ', ' + str(b.y))   # 1.0, 2.0