Difference between revisions of "IC Python API:RLPy RMatrix3"
Chuck (RL) (Talk | contribs) m |
Chuck (RL) (Talk | contribs) m |
||
Line 18: | Line 18: | ||
==== Parameters ==== | ==== Parameters ==== | ||
− | :fM00[IN] Initialization value - float | + | :'''fM00''' [IN] Initialization value - float |
− | :fM01[IN] Initialization value - float | + | :'''fM01''' [IN] Initialization value - float |
− | :fM02[IN] Initialization value - float | + | :'''fM02''' [IN] Initialization value - float |
− | :fM10[IN] Initialization value - float | + | :'''fM10''' [IN] Initialization value - float |
− | :fM11[IN] Initialization value - float | + | :'''fM11''' [IN] Initialization value - float |
− | :fM12[IN] Initialization value - float | + | :'''fM12''' [IN] Initialization value - float |
− | :fM20[IN] Initialization value - float | + | :'''fM20''' [IN] Initialization value - float |
− | :fM21[IN] Initialization value - float | + | :'''fM21''' [IN] Initialization value - float |
− | :fM22[IN] Initialization value - float | + | :'''fM22''' [IN] Initialization value - float |
==== Returns ==== | ==== Returns ==== |
Latest revision as of 22:15, 13 April 2020
Contents
- 1 Description
- 2 Constructor & Destructor
- 3 Operators
- 4 Member Functions
- 4.1 MakeIdentity ( self )
- 4.2 M ( self, args )
- 4.3 E ( self, args )
- 4.4 GetRow ( self, nRow )
- 4.5 GetColumn( self, nCol )
- 4.6 Transpose( self )
- 4.7 TransposeTimes( self, mM )
- 4.8 TimesTranspose( self, mM )
- 4.9 Inverse( self )
- 4.10 Adjoint( self )
- 4.11 AdjointTranspose( self )
- 4.12 InverseTranspose( self )
- 4.13 Determinant( self )
- 4.14 MaxColumn( self )
- 4.15 MaxRow( self )
- 4.16 OneNorm( self )
- 4.17 InfNorm( self )
- 4.18 FromAxisAngle( self, rkAxis, fAngle )
- 4.19 RotationX( self, fAngle )
- 4.20 RotationY( self, fAngle )
- 4.21 RotationZ( self, fAngle )
- 4.22 AccuScale( self, rkScale )
- 4.23 ToEulerAngle( self, rkScaleself, Order, rx, ry, rz )
- 4.24 FromEulerAngle( self, Order, rx, ry, rz )
- 4.25 FromSphereUnitVec( self, rkVec )
- 4.26 IsRightHandCoordinate( self )
- Main article: Modules.
- Last modified: 04/13/2020
Description
This class represent a standard 3x3 matrix. This class provides access to RLPy's internal 3x3 matrix operators and related functions. iClone uses row-major order where consecutive elements of a row reside next to each other, and the data is read from left to right, top to bottom, in a vertical zig-zag:
[0, 1, 2] [3, 4, 5] [6, 7, 8]
Constructor & Destructor
__init__(self, fM00, fM01, fM02, fM10, fM11, fM12, fM20, fM21, fM22)
The constructor. Initialize a new 3x3 matrix with another RMatrix3 object.
Parameters
- fM00 [IN] Initialization value - float
- fM01 [IN] Initialization value - float
- fM02 [IN] Initialization value - float
- fM10 [IN] Initialization value - float
- fM11 [IN] Initialization value - float
- fM12 [IN] Initialization value - float
- fM20 [IN] Initialization value - float
- fM21 [IN] Initialization value - float
- fM22 [IN] Initialization value - float
Returns
- Returns the row vector of the matrix - RMatrix3
1 matrix3 = RLPy.RMatrix3( 1, 0, 0,
2 0, 2, 0,
3 0, 0, 3 )
__init__(self, fM00, fM11, fM22)
The constructor. Initialize a new 3x3 matrix with RMatrix3[0,0], RMatrix3[1,1], RMatrix3[2,2].
Parameters
- fM00 [IN] Initialization value - float
- fM11 [IN] Initialization value - float
- fM22 [IN] Initialization value - float
Returns
- Returns the row vector of the matrix - RMatrix3
1 matrix3_init = RLPy.RMatrix3(1,2,3)
2 matrix3 = RLPy.RMatrix3( 1, 0, 0,
3 0, 2, 0,
4 0, 0, 3 )
5
6 print( matrix3_init == matrix3 ) # true
__init__(self, args)
The constructor. Initialize a new 3x3 matrix with another RMatrix3 object.
Parameters
- args [IN] A 3X3 matrix object - RMatrix3
Returns
- Returns the row vector of the matrix - RMatrix3
1 matrix3 = RLPy.RMatrix3( 1, 0, 0,
2 0, 2, 0,
3 0, 0, 3 )
4 matrix3_copy = RLPy.RMatrix3(matrix3)
5 print( matrix3_copy == matrix3 ) # true
__init__(self, rAxis, fAngle)
The constructor. Initialize a new 3x3 matrix with RVector3 axis object and angle.
Parameters
Returns
- Returns the row vector of the matrix - RMatrix3
1 matrix3 = RLPy.RMatrix3( RLPy.RVector3( 1, 0, 0 ), 3 )
Operators
+
The "addition" operator.
See Also: +=
1 matrix3_a = RLPy.RMatrix3( 1, 2, 3,
2 0, 0, 0,
3 0, 0, 0 )
4 matrix3_b = RLPy.RMatrix3( 2, 2, 2,
5 0, 0, 0,
6 0, 0, 0 )
7 matrix3_result = matrix3_a + matrix3_b
8
9 print( matrix3_result.GetRow(0)[0] == 1+2 ) # true
10 print( matrix3_result.GetRow(0)[1] == 2+2 ) # true
11 print( matrix3_result.GetRow(0)[2] == 3+2 ) # true
-
The "subtraction" operator.
See Also: -=
1 matrix3_a = RLPy.RMatrix3( 1, 2, 3,
2 0, 0, 0,
3 0, 0, 0 )
4 matrix3_b = RLPy.RMatrix3( 2, 2, 2,
5 0, 0, 0,
6 0, 0, 0 )
7 matrix3_result = matrix3_a - matrix3_b
8
9 print( matrix3_result.GetRow(0)[0] == 1-2 ) # true
10 print( matrix3_result.GetRow(0)[1] == 2-2 ) # true
11 print( matrix3_result.GetRow(0)[2] == 3-2 ) # true
*
The "multiplication" operator.
See Also: *=
1 matrix3_a = RLPy.RMatrix3( 1, 2, 3,
2 0, 0, 0,
3 0, 0, 0 )
4 matrix3_b = RLPy.RMatrix3( 2, 0, 0,
5 2, 0, 0,
6 2, 0, 0 )
7 matrix3_result = matrix3_a * matrix3_b
8 print( matrix3_result.GetRow(0)[0] == 1*2 + 2*2 + 3*2 ) # true
/
The "division" operator.
See Also: /=
1 matrix3_a = RLPy.RMatrix3( 1, 2, 3,
2 0, 0, 0,
3 0, 0, 0 )
4 matrix3_result = matrix3_a / 2
5
6 print( matrix3_result.GetRow(0)[0] == 1/2 ) # true
7 print( matrix3_result.GetRow(0)[1] == 2/2 ) # true
8 print( matrix3_result.GetRow(0)[2] == 3/2 ) # true
-
The "unary minus" operator.
1 matrix3_a = RLPy.RMatrix3( 1, 2, 3,
2 0, 0, 0,
3 0, 0, 0 )
4 matrix3_result = -matrix3_a
5
6 print( matrix3_result.GetRow(0)[0] == -1 ) # true
7 print( matrix3_result.GetRow(0)[1] == -2 ) # true
8 print( matrix3_result.GetRow(0)[2] == -3 ) # true
==
The "equal to" operator. Performs a one-by-one comparison of the matrix array.
See Also: !=
1 matrix3_a = RLPy.RMatrix3( 1, 2, 3,
2 0, 0, 0,
3 0, 0, 0 )
4 matrix3_b = RLPy.RMatrix3( 1, 2, 3,
5 0, 0, 0,
6 0, 0, 0 )
7 print( matrix3_a == matrix3_b ) # true
!=
The "not equal to" operator. Performs a one-by-one comparison of the matrix array.
See Also: ==
1 matrix3_a = RLPy.RMatrix3( 1, 2, 3,
2 0, 0, 0,
3 0, 0, 0 )
4 matrix3_b = RLPy.RMatrix3( 4, 5, 6,
5 0, 0, 0,
6 0, 0, 0 )
7 print( matrix3_a != matrix3_b ) # true
>
The "greater than" operator. Performs a one-by-one comparison of the matrix array.
See Also: >=
1 matrix3_a = RLPy.RMatrix3( 2, 0, 0,
2 0, 0, 0,
3 0, 0, 0 )
4 matrix3_b = RLPy.RMatrix3( 5, 0, 0,
5 0, 0, 0,
6 0, 0, 0 )
7 print( matrix3_b >matrix3_a ) # true
>=
The "greater than or equal to" operator. Performs a one-by-one comparison of the matrix array.
See Also: >
1 matrix3_a = RLPy.RMatrix3( 1, 1, 3,
2 0, 0, 0,
3 0, 0, 0 )
4 matrix3_b = RLPy.RMatrix3( 1, 1, 9,
5 0, 0, 0,
6 0, 0, 0 )
7 print( matrix3_b >= matrix3_a ) # true
<
The "less than" operator. Performs a one-by-one comparison of the matrix array.
See Also: <=
1 matrix3_a = RLPy.RMatrix3( 2, 0, 0,
2 0, 0, 0,
3 0, 0, 0 )
4 matrix3_b = RLPy.RMatrix3( 5, 0, 0,
5 0, 0, 0,
6 0, 0, 0 )
7 print( matrix3_a< matrix3_b ) # true
<=
The "less than" operator. Performs a one-by-one comparison of the matrix array.
See Also: <
1 matrix3_a = RLPy.RMatrix3( 1, 1, 3,
2 0, 0, 0,
3 0, 0, 0 )
4 matrix3_b = RLPy.RMatrix3( 1, 1, 9,
5 0, 0, 0,
6 0, 0, 0 )
7 print( matrix3_a<= matrix3_b ) # true
+=
The "addition assignment" operator.
See Also: +
1 matrix3 = RLPy.RMatrix3( 1, 2, 3,
2 0, 0, 0,
3 0, 0, 0 )
4 matrix3 += RLPy.RMatrix3( 2, 2, 2,
5 0, 0, 0,
6 0, 0, 0 )
7
8 print( matrix3.GetRow(0)[0] == 1+2 ) # true
9 print( matrix3.GetRow(0)[1] == 2+2 ) # true
10 print( matrix3.GetRow(0)[2] == 3+2 ) # true
-=
The "subtraction assignment" operator.
See Also: -
1 matrix3 = RLPy.RMatrix3( 1, 2, 3,
2 0, 0, 0,
3 0, 0, 0 )
4 matrix3 -= RLPy.RMatrix3( 2, 2, 2,
5 0, 0, 0,
6 0, 0, 0 )
7
8 print( matrix3.GetRow(0)[0] == 1-2 ) # true
9 print( matrix3.GetRow(0)[1] == 2-2 ) # true
10 print( matrix3.GetRow(0)[2] == 3-2 ) # true
*=
The "multiplication assignment" operator.
See Also: *
1 matrix3 = RLPy.RMatrix3( 1, 2, 3,
2 0, 0, 0,
3 0, 0, 0 )
4 matrix3 *= 2
5
6 print( matrix3.GetRow(0)[0] == 1*2 ) # true
7 print( matrix3.GetRow(0)[1] == 2*2 ) # true
8 print( matrix3.GetRow(0)[2] == 3*2 ) # true
/=
The "division assignment" operator.
See Also: /
1 matrix3 = RLPy.RMatrix3( 1, 2, 3,
2 0, 0, 0,
3 0, 0, 0 )
4 matrix3 /= 2
5
6 print( matrix3.GetRow(0)[0] == 1/2 ) # true
7 print( matrix3.GetRow(0)[1] == 2/2 ) # true
8 print( matrix3.GetRow(0)[2] == 3/2 ) # true
Member Functions
MakeIdentity ( self )
This function can be used to initialize the 3x3 matrix. It is equivalent to setting the matrix to:
[1 0 0] [0 1 0] [0 0 1]
Returns
This object - RMatrix3
1 matrix3 = RLPy.RMatrix3()
2 matrix3.MakeIdentity()
M ( self, args )
Get the value of an element in a 3x3 matrix by row and column index.
Parameters
- nRow [IN] Index of the row in the matrix - int
- nCol [IN] Index of the column in the matrix - int
Returns
- The matrix element specified by row and column - float
1 matrix3 = RLPy.RMatrix3()
2 matrix3.MakeIdentity()
3
4 print(matrix3.M(0,0)) # <Swig Object of type 'float *' at 0x0000020316B015A0>
E ( self, args )
Get the value of an element in a 3x3 matrix by index number (from 0 to 8);
Parameters
- nRow [IN] Index of the matrix.
Returns
- The matrix element specified by index - float
1 matrix3 = RLPy.RMatrix3()
2 matrix3.MakeIdentity()
3
4 print(matrix3.E(0)) #
GetRow ( self, nRow )
Retreive a row inside a 3x3 matrix.
Parameters
- nRow [IN] Index of the row in the matrix - int
Returns
- The row vector of the matrix - RVector3
1 matrix3 = RLPy.RMatrix3()
2 matrix3.MakeIdentity()
3 row0 = matrix3.GetRow(0)
4
5 print(row0[0])
6 print(row0[1])
7 print(row0[2])
GetColumn( self, nCol )
Retreive a column inside a 3x3 matrix.
Parameters
- nCol [IN] Index of the row in the matrix - int
Returns
- The column vector of the matrix - RVector3
1 matrix3 = RLPy.RMatrix3()
2 matrix3.MakeIdentity()
3 col0 = matrix3.GetColumn(0)
4
5 print(col0[0])
6 print(col0[1])
7 print(col0[2])
Transpose( self )
Obtain the transposed matrix by transposing the current m * n matrix into an n * m matrix by row-column swapping.
Returns
- A new matrix containing this matrix's transpose - RMatrix3
1 matrix3_orgin = RLPy.RMatrix3( 1, 2, 3,
2 4, 5, 6,
3 7, 8, 9 )
4 matrix3_transpose = matrix3_orgin.Transpose()
5 row0 = matrix3_orgin.GetRow(0)
6 col0 = matrix3_transpose.GetColumn(0)
7
8 print(row0[0] == col0[0])
9 print(row0[1] == col0[1])
10 print(row0[2] == col0[2])
TransposeTimes( self, mM )
Multiply a transposed version of a 3x3 matrix with itself.
Parameters
- mM [IN] the matrix - RMatrix3
Returns
- A new matrix. (this^T * mM) - RMatrix3
1 matrix3_orgin = RLPy.RMatrix3( 1, 2, 3,
2 4, 5, 6,
3 7, 8, 9 )
4 matrix3_transpose_value = RLPy.RMatrix3( 2, 0, 0,
5 0, 2, 0,
6 0, 0, 2 )
7 matrix3_transpose_times = matrix3_orgin.TransposeTimes(matrix3_transpose_value)
8 row0 = matrix3_orgin.GetRow(0)
9 col0 = matrix3_transpose_times.GetColumn(0)
10
11 print(row0[0]*2 == col0[0])
12 print(row0[1]*2 == col0[1])
13 print(row0[2]*2 == col0[2])
TimesTranspose( self, mM )
Multiply this 3x3 matrix with a transposed version of itself.
Parameters
- mM [IN] the matrix - RMatrix3
Returns
- A new matrix. (this * M^T) - RMatrix3
1 matrix3_orgin = RLPy.RMatrix3( 1, 2, 3,
2 4, 5, 6,
3 7, 8, 9 )
4 matrix3_transpose_value = RLPy.RMatrix3( 3, 0, 0,
5 0, 3, 0,
6 0, 0, 3 )
7 matrix3_times_transpose = matrix3_orgin.TimesTranspose(matrix3_transpose_value)
8 row0 = matrix3_orgin.GetColumn(0)
9 col0 = matrix3_times_transpose.GetColumn(0)
10
11 print(row0[0]*3 == col0[0])
12 print(row0[1]*3 == col0[1])
13 print(row0[2]*3 == col0[2])
Inverse( self )
Obtain the inverse (reciprocal) of this 3x3 matrix (A^-1).
Returns
- A new matrix containing this matrix's inverse - RMatrix3
1 matrix3_value = RLPy.RMatrix3( 1, 2, 3,
2 2, 3, 4,
3 4, 2, 1 )
4 matrix3_inverse = matrix3_value.Inverse()
5 row0 = matrix3_inverse.GetRow(0)
6
7 print(row0[0])
8 print(row0[1])
9 print(row0[2])
Adjoint( self )
Adjugate this 3x3 matrix.
Returns
- A new matrix containing this matrix's adjoint - RMatrix3
1 matrix3_value = RLPy.RMatrix3( 1, 2, 3,
2 2, 3, 4,
3 4, 2, 1 )
4 matrix3_Adjoint = matrix3_value.Adjoint()
5 row0 = matrix3_Adjoint.GetRow(0)
6
7 print(row0[0])
8 print(row0[1])
9 print(row0[2])
AdjointTranspose( self )
Adjugate and transpose this 3x3 matrix.
Returns
- A new adjugated and transposed matrix - RMatrix3
1 matrix3_value = RLPy.RMatrix3( 1, 2, 3,
2 2, 3, 4,
3 4, 2, 1 )
4 matrix3_Adjoint_transpose = matrix3_value.AdjointTranspose()
5 col0_Adjoint_transpose = matrix3_Adjoint_transpose.GetColumn(0)
6
7 print(col0_Adjoint_transpose[0])
8 print(col0_Adjoint_transpose[1])
9 print(col0_Adjoint_transpose[2])
InverseTranspose( self )
Invert and transpose this 3x3 matrix.
Returns
- A new inverted and transposed matrix - RMatrix3
1 matrix3_value = RLPy.RMatrix3( 1, 2, 3,
2 2, 3, 4,
3 4, 2, 1 )
4 matrix3_inverse_transpose = matrix3_value.InverseTranspose()
5 row0_inverse_transpose = matrix3_inverse_transpose.GetRow(0)
6
7 print(row0_inverse_transpose[0])
8 print(row0_inverse_transpose[1])
9 print(row0_inverse_transpose[2])
Determinant( self )
Obtain the scalar value for this 3x3 matrix (|A|).
Returns
- The determinant of the matrix - float
1 matrix3_value = RLPy.RMatrix3( 1, 2, 3,
2 2, 3, 4,
3 4, 2, 1 )
4
5 print(matrix3_value.Determinant())
MaxColumn( self )
Find the maximum absolute value within this 3x3 matrix, and return the column in which the value is located. If all of the elements within the 3x3 matrix are 0 then return -1.
Returns
- Index of column of M containing maximum abs entry, or -1 if M = 0 - int
1 matrix3_value = RLPy.RMatrix3( 10, 20, -30,
2 0, 0, 0,
3 0, 0, 0 )
4
5 print(matrix3_value.MaxColumn()) # column:2 ->abs(-30)
MaxRow( self )
Find the maximum absolute value within this 3x3 matrix, and return the row in which the value is located. If all of the elements within the 3x3 matrix are 0 then return -1.
Returns
- Index of row of M containing maximum abs entry, or -1 if M = 0 - int
1 matrix3_value = RLPy.RMatrix3( 10, 0, 0,
2 20, 0, 0,
3 -30, 0, 0 )
4 print(matrix3_value.MaxRow()) # Row:2 ->abs(-30)
OneNorm( self )
Return the sum of the column elements that contain the largest absolute values.
Returns
- Norm of this 3x3 matrix - float
1 matrix3_row_value = RLPy.RMatrix3( 10, 0, 0,
2 20, 0, 0,
3 -30, 0, 0 )
4 print(matrix3_row_value.OneNorm()) # 10+20+abs(-30) = 60
InfNorm( self )
Return the sum of the row elements that contain the largest absolute values.
Returns
- InfNorm of this 3x3 matrix - float
1 matrix3_column_value = RLPy.RMatrix3( 10, 20, -30,
2 0, 0, 0,
3 0, 0, 0 )
4 print(matrix3_column_value.InfNorm()) # 10+20+abs(-30) = 60
FromAxisAngle( self, rkAxis, fAngle )
Rotation matrix from axis angle。
Parameters
- rkAxis [IN] axis vector - RVector3
- fAngle [IN] angle in radians - float
Returns
- A new matrix from specified axis angle - RMatrix3
1 matrix3_orgin = RLPy.RMatrix3()
2 matrix3_orgin.MakeIdentity()
3
4 x_axis_vector = RLPy.RVector3( 1, 0, 0 ) # axis = "X"
5 y_axis_vector = RLPy.RVector3( 0, 1, 0 ) # axis = "Y"
6 z_axis_vector = RLPy.RVector3( 0, 0, 1 ) # axis = "Z"
7
8 matrix3_orgin.FromAxisAngle( x_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
9 matrix3_orgin.FromAxisAngle( y_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
10 matrix3_orgin.FromAxisAngle( z_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
RotationX( self, fAngle )
Rotate this 3x3 matrix around the x-axis.
Parameters
fAngle [IN] angle in radians - float
Returns
- The rotated 3x3 matrix around the x-axis - RMatrix3
1 matrix3_orgin = RLPy.RMatrix3()
2 matrix3_orgin.MakeIdentity()
3 matrix3_orgin.RotationX( 90 * RLPy.RMath.CONST_DEG_TO_RAD )
RotationY( self, fAngle )
Rotate this 3x3 matrix around the y-axis。
Parameters
- fAngle [IN] angle in radians - float
Returns
- The rotated 3x3 matrix around the y-axis - RMatrix3
1 matrix3_orgin = RLPy.RMatrix3()
2 matrix3_orgin.MakeIdentity()
3 matrix3_orgin.RotationY( 90 * RLPy.RMath.CONST_DEG_TO_RAD )
RotationZ( self, fAngle )
Rotation this 3x3 matrix around the z-axis.
Parameters
- fAngle [IN] angle in radians - float
Returns
- A new 3x3 matrix of for rotations around z-axis - RMatrix3
1 matrix3_orgin = RLPy.RMatrix3()
2 matrix3_orgin.MakeIdentity()
3 matrix3_orgin.RotationZ( 90 * RLPy.RMath.CONST_DEG_TO_RAD )
AccuScale( self, rkScale )
Accumulate 3x3 matrix with scale vector.
Parameters
rkScale [IN] Scale vector - RVector3
Returns
- A newly scaled matrix - RMatrix3
1 matrix3_orgin = RLPy.RMatrix3()
2 matrix3_orgin.MakeIdentity()
3 scale_vector = RLPy.RVector3( 2, 2, 2 )
4 matrix3_orgin.AccuScale(scale_vector)
ToEulerAngle( self, rkScaleself, Order, rx, ry, rz )
Convert 3x3 matrix to Euler angles.
Parameters
- Order [IN] Euler order - RLPy.Rotation_Order
- rx [OUT] Angle of x-axis in radians - float
- ry [OUT] Angle of y-axis in radians - float
- rz [OUT] Angle of z-axis in radians - float
1 matrix3_value = RLPy.RMatrix3( -0, -0, 1,
2 0, -1, -0,
3 1, 0, -0 )
4 euler_angle_x = 0
5 euler_angle_y = 0
6 euler_angle_z = 0
7 result = matrix3_value.ToEulerAngle( RLPy.EEulerOrder_XYZ, euler_angle_x, euler_angle_y, euler_angle_z )
8
9 print(result[0] * RLPy.RMath.CONST_RAD_TO_DEG) # 180
10 print(result[1] * RLPy.RMath.CONST_RAD_TO_DEG) # 90
11 print(result[2] * RLPy.RMath.CONST_RAD_TO_DEG) # 0
FromEulerAngle( self, Order, rx, ry, rz )
Convert Euler angle to a 3x3 matrix according to a rotation axis order.
Parameters
- Order [IN] Euler order - RLPy.Rotation_Order
- rx [IN] Angle of x-axis in radians - float
- ry [IN] Angle of y-axis in radians - float
- rz [IN] Angle of z-axis in radians - float
Returns
- A new matrix from specified axis angle - RMatrix3
1 matrix3_orgin = RLPy.RMatrix3()
2 euler_angle_x = 90 * RLPy.RMath.CONST_DEG_TO_RAD
3 euler_angle_y = 0
4 euler_angle_z = 0
5 matrix3_result = matrix3_orgin.FromEulerAngle( RLPy.EEulerOrder_XYZ, euler_angle_x, euler_angle_y, euler_angle_z)
6 row0 = matrix3_result[0].GetRow(0)
7
8 print(row0[0])
9 print(row0[1])
10 print(row0[2])
FromSphereUnitVec( self, rkVec )
Convert Euler angle to matrix.
Parameters
- rkVec [IN] vector - RVector3
Returns
- A new 3x3 matrix from sphere unit vector - RMatrix3
1 vector = RLPy.RVector3( 0, 1, 0 )
2 matrix3_result = RLPy.RMatrix3().FromSphereUnitVec( vector )
3 row0 = matrix3_result.GetRow(0)
4
5 print(row0[0])
6 print(row0[1])
7 print(row0[2])
IsRightHandCoordinate( self )
Obtain this 3x3 matrix's coordinate system. True stands for right-handed coordinate system while False for left-handed.
Returns
- True Right hand coordinate - bool
- False Left hand coordinate - bool
1 matrix3_value = RLPy.RMatrix3( 1, 0, 0,
2 0, 1, 0,
3 0, 0, 1 )
4 result = matrix3_value.IsRightHandCoordinate()
5
6 print(result)