IC Python API:RLPy RVector2

From Reallusion Wiki!
Revision as of 22:09, 7 April 2020 by Chuck (RL) (Talk | contribs)

Jump to: navigation, search
Main article: Modules.
Last modified: 04/7/2020

Description

This class represents a 2D vector (x, y). This class provides access to RLPy's internal 2D vector math library allowing 2D vectors to be handled easily, in a manner compatible with internal RLPy data structures. It also supports operators and provides some constants for your convenience:

Constant Description
RVector2.ZERO 2D zero vector2: (0, 0)
RVector2.UNIT_X 2D x unit vector2: (1, 0)
RVector2.UNIT_Y 2D y unit vector2: (0, 1)
RVector2.UNIT_XY 2D unit vector2: (1, 1)

Constructors & Destructors

__init__

Initialize a new RVector2object as a zeroed 2D vector: (0, 0).

a = RLPy.RVector2()

__init__( self, x, y )

Initialize a new RVector2object as a 2D vector: (x, y).

Parameters

x [IN] a numerical value for x coordinate - float / int
y [IN] a numerical value for y coordinate - float / int
a = RLPy.RVector2(1, 2)

__init__( self, args )

Initialize a new RVector2object with another RVector2object: args. This new RVector2object has the same value as args.

a = RLPy.RVector2(1, 2)
b = RLPy.RVector2(a)

Operators

==

The "equal to" operator.

See Also: !=

a = RLPy.RVector2(1, 2)
b = a

print(a == b) #True

!=

The "not equal to" operator.

See Also: ==

a = RLPy.RVector2()
b = RLPy.RVector2(1, 2)

print(a != b) #True

<

The "less than" operator. Similar to string comparison: Returns True upon the first match that is less than, and False if it is greater than. If the current comparison is equal, continue onto the next element. If all elements are equal then return False.

See Also: <=

a = RLPy.RVector2(0, 0)
b = RLPy.RVector2(0, 1)
c = RLPy.RVector2(1, 0)
d = RLPy.RVector2(0, 0)

print(a< b) #True
print(b< c) #True
print(a< d) #False

>

The "greater than" operator. Similar to string comparison: Returns True upon the first match that is greater than, and False if it is less than. If the current comparison is equal, continue onto the next element. If all elements are equal then return False.

See Also: >=

a = RLPy.RVector2(0, 0)
b = RLPy.RVector2(0, 1)
c = RLPy.RVector2(1, 0)
d = RLPy.RVector2(0, 0)

print(b >a) #True
print(c >b) #True
print(d >a) #False

<=

The "less than or equal" operator. Similar to string comparison: Returns True upon the first match that is less than, and False if it is greater than. If the current comparison is equal, continue onto the next element. If all elements are equal then return True.

See Also: <

a = RLPy.RVector2(0, 0)
b = RLPy.RVector2(0, 1)
c = RLPy.RVector2(1, 0)
d = RLPy.RVector2(0, 0)

print(a<= b) #True
print(b<= c) #True
print(a<= d) #True

>=

The "greater than or equal" operator. Similar to string comparison: Returns True upon the first match that is greater than, and False if it is less than. If the current comparison is equal, continue onto the next element. If all elements are equal then return True.

See Also: >

a = RLPy.RVector2(0, 0)
b = RLPy.RVector2(0, 1)
c = RLPy.RVector2(1, 0)
d = RLPy.RVector2(0, 0)

print(b >= a) #True
print(c >= b) #True
print(d >= a) #True

+

The "addition" operator. Perform 2D vector addition.

See Also: +=

a = RLPy.RVector2(0, 1)
b = RLPy.RVector2(1, 2)
c = a + b

print(str(c.x) + ', ' + str(c.y)) # 1.0, 3.0

-

The "subtraction" operator. Perform 2D vector subtraction.

See Also: -=

a = RLPy.RVector2(0, 1)
b = RLPy.RVector2(1, 3)
c = b - a

print(str(c.x) + ', ' + str(c.y)) # 1.0, 2.0

*

The "multiplication" operator. Perform a scalar multiplication when the second operand is an integer or float. If the second operand is another 2D vector, then the corresponding elements are multiplied.

See Also: *=

a = RLPy.RVector2(1, 2)
b = a * 2
c = RLPy.RVector2(2, 3)
d = a * c

print(str(b.x) + ', ' + str(b.y)) # 2.0, 4.0
print(str(d.x) + ', ' + str(d.y)) # 2.0, 6.0

/

The "division" operator. Perform a scalar division when the second operand is an integer or float. If the second operand is another 2D vector, then the corresponding elements are divided.

See Also: /=

a = RLPy.RVector2(1, 2)
b = a / 2
c = RLPy.RVector2(2, 3)
d = a / c

print(str(b.x) + ', ' + str(b.y)) # 0.5, 1.0
print(str(d.x) + ', ' + str(d.y)) # 0.5, 0.6666666865348816

-

The "unary minus" operator. Inverse the sign of each element.

a = RLPy.RVector2(1, 2)
b = -a

print(str(b.x) + ', ' + str(b.y)) # -1.0, -2.0

+=

The "addition assignment" operator.

See Also: +

a = RLPy.RVector2(0, 1)
b = RLPy.RVector2(1, 2)
a += b

print(str(a.x) + ', ' + str(a.y)) # 1.0, 3.0

-=

The "subtraction assignment" operator.

See Also: -

a = RLPy.RVector2(0, 1)
b = RLPy.RVector2(1, 2)
a -= b

print(str(a.x) + ', ' + str(a.y)) # -1.0, -1.0

*=

The "multiplication assignment" operator. For the calculation method, refer to the * operator.

See Also: *

a = RLPy.RVector2(1, 2)
a *= 2
b = RLPy.RVector2(1, 2)
c = RLPy.RVector2(2, 3)
b *= c

print(str(a.x) + ', ' + str(a.y)) # 2.0, 4.0
print(str(b.x) + ', ' + str(b.y)) # 2.0, 6.0

/=

The "division assignment" operator. For the calculation method, refer to the / operator.

See Also: /

a = RLPy.RVector2(1, 2)
a /= 2
b = RLPy.RVector2(1, 2)
c = RLPy.RVector2(2, 3)
b /= c

print(str(a.x) + ', ' + str(a.y)) # 0.5, 1.0
print(str(b.x) + ', ' + str(b.y)) # 0.5, 0.6666666865348816

Member Functions

AddWithWeight

Add a 2D vector with weight.

Parameters

vSrc [IN] The 2D vector to add - RVector2
fWeight [IN] The value of weight - float
a = RLPy.RVector2(0, 1)
b = RLPy.RVector2(1, 2)
a.AddWithWeight(b, 2)

print(str(a.x) + ', ' + str(a.y)) # 2.0, 5.0

Dot

Calculate dot production of the two vectors.

Parameters

vV [IN] The 2D vector to compute dot product - RVector2

Returns

The value of the dot product - float
a = RLPy.RVector2(1, 2)
dot = a.Dot( RLPy.RVector2(3, 5) )

print(dot) #13.0

Inverse

Return the inverse of a given 2D vector by inverting the x, y elements.

Returns

The inversed 2D vector - RVector2
a = RLPy.RVector2(0.5, 4)
b = a.Inverse()

print(str(b.x) + ', ' + str(b.y)) # 2.0, 0.25

Length

Length of the 2D vector.

Returns

The length of this 2D vector - float
a = RLPy.RVector2(3, 4)

print( str(a.Length()) ) # 5.0

Normalize

Normalize a given 2D vector.

Returns

Returns the length of the 2D vector before normalization - float
a = RLPy.RVector2(1, 1)
b = a.Normalize()

print(str(a.x) + ', ' + str(a.y)) # 0.7071067690849304, 0.7071067690849304
print(b) # 1.4142135381698608

SetX

Set the value of the x-axis.

Parameters

tX [IN] the value of the x-axis - float
a = RLPy.RVector2(1, 1)
a.SetX(10)

print(str(a.x) + ', ' + str(a.y)) # 10.0, 1.0

SetY

Set the value of the y-axis.

Parameters

tX [IN] the value of the y-axis.
a = RLPy.RVector2(1, 1)
a.SetY(10)

print(str(a.x) + ', ' + str(a.y)) # 1.0, 10.0

SquaredLength

Squared length of the 2D vector.

Returns

The squared length of this 2D vector - float
a = RLPy.RVector2(1, 1)

print(a.SquaredLength()) # 2.0