Difference between revisions of "IC Python API:RLPy RMatrix4"

From Reallusion Wiki!
Jump to: navigation, search
m
m
Line 5: Line 5:
 
== Description ==
 
== Description ==
  
This class represent the transform data of RTransform. This class provides access to RLPy's internal 4x4 matrix operators and related functions.
+
This class represent a standard 3x3 matrix. This class provides access to RLPy's internal 3x3 matrix operators and related functions. iClone uses row-major order where consecutive elements of a row reside next to each other, and the data is read from left to right, top to bottom, in a vertical zig-zag:
 +
 
 +
[0, 1, 2]
 +
[3, 4, 5]
 +
[6, 7, 8]
  
 
== Operators ==
 
== Operators ==
Line 13: Line 17:
 
The "addition" operator.
 
The "addition" operator.
  
<syntaxhighlight lang="Python">
+
See Also: [[#+=|+=]]
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0 )
+
matrix4_b = RLPy.RMatrix4( 2, 2, 2, 2,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0 )
+
matrix4_result = matrix4_a + matrix4_b
+
  
print( matrix4_result.GetRow(0)[0] == 1+2 ) # true
+
<syntaxhighlight lang="python">
print( matrix4_result.GetRow(0)[1] == 2+2 ) # true
+
matrix3_a = RLPy.RMatrix3( 1, 2, 3,
print( matrix4_result.GetRow(0)[2] == 3+2 ) # true
+
                          0, 0, 0,
print( matrix4_result.GetRow(0)[3] == 4+2 ) # true
+
                          0, 0, 0 )
 +
matrix3_b = RLPy.RMatrix3( 2, 2, 2,
 +
                          0, 0, 0,
 +
                          0, 0, 0 )
 +
matrix3_result = matrix3_a + matrix3_b
 +
 
 +
print( matrix3_result.GetRow(0)[0] == 1+2 ) # true
 +
print( matrix3_result.GetRow(0)[1] == 2+2 ) # true
 +
print( matrix3_result.GetRow(0)[2] == 3+2 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
Line 34: Line 37:
 
The "subtraction" operator.
 
The "subtraction" operator.
  
<syntaxhighlight lang="Python">
+
See Also: [[#-=|-=]]
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0 )
+
matrix4_b = RLPy.RMatrix4( 2, 2, 2, 2,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0 )
+
matrix4_result = matrix4_a - matrix4_b
+
  
print( matrix4_result.GetRow(0)[0] == 1-2 ) # true
+
<syntaxhighlight lang="python">
print( matrix4_result.GetRow(0)[1] == 2-2 ) # true
+
matrix3_a = RLPy.RMatrix3( 1, 2, 3,
print( matrix4_result.GetRow(0)[2] == 3-2 ) # true
+
                          0, 0, 0,
print( matrix4_result.GetRow(0)[3] == 4-2 ) # true
+
                          0, 0, 0 )
 +
matrix3_b = RLPy.RMatrix3( 2, 2, 2,
 +
                          0, 0, 0,
 +
                          0, 0, 0 )
 +
matrix3_result = matrix3_a - matrix3_b
 +
 
 +
print( matrix3_result.GetRow(0)[0] == 1-2 ) # true
 +
print( matrix3_result.GetRow(0)[1] == 2-2 ) # true
 +
print( matrix3_result.GetRow(0)[2] == 3-2 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
 
=== * ===
 
=== * ===
  
The "multiplication" operator.  
+
The "multiplication" operator.
  
<syntaxhighlight lang="Python">
+
See Also: [[#*=|*=]]
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0 )
+
matrix4_b = RLPy.RMatrix4( 2, 0, 0, 0,
+
                          2, 0, 0, 0,
+
                          2, 0, 0, 0,
+
                          2, 0, 0, 0 )
+
matrix4_result = matrix4_a * matrix4_b
+
  
print( matrix4_result.GetRow(0)[0] == 1*2 + 2*2 + 3*2 + 4*2  ) # true
+
<syntaxhighlight lang="python">
 +
matrix3_a = RLPy.RMatrix3( 1, 2, 3,
 +
                          0, 0, 0,
 +
                          0, 0, 0 )
 +
matrix3_b = RLPy.RMatrix3( 2, 0, 0,
 +
                          2, 0, 0,
 +
                          2, 0, 0 )
 +
matrix3_result = matrix3_a * matrix3_b
 +
print( matrix3_result.GetRow(0)[0] == 1*2 + 2*2 + 3*2 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
Line 73: Line 74:
 
The "division" operator.  
 
The "division" operator.  
  
<syntaxhighlight lang="Python">
+
See Also: [[#/=|/=]]
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
+
 
                           0, 0, 0, 0,
+
<syntaxhighlight lang="python">
                           0, 0, 0, 0,
+
matrix3_a = RLPy.RMatrix3( 1, 2, 3,
                          0, 0, 0, 0 )
+
                           0, 0, 0,
matrix4_result = matrix4_a / 2
+
                           0, 0, 0 )
 +
matrix3_result = matrix3_a / 2
  
print( matrix4_result.GetRow(0)[0] == 1/2 ) # true
+
print( matrix3_result.GetRow(0)[0] == 1/2 ) # true
print( matrix4_result.GetRow(0)[1] == 2/2 ) # true
+
print( matrix3_result.GetRow(0)[1] == 2/2 ) # true
print( matrix4_result.GetRow(0)[2] == 3/2 ) # true
+
print( matrix3_result.GetRow(0)[2] == 3/2 ) # true
print( matrix4_result.GetRow(0)[3] == 4/2 ) # true
+
 
</syntaxhighlight>
 
</syntaxhighlight>
  
 
=== - ===
 
=== - ===
  
The "unary minus" .
+
The "unary minus" operator.
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
+
matrix3_a = RLPy.RMatrix3( 1, 2, 3,
                           0, 0, 0, 0,
+
                           0, 0, 0,
                           0, 0, 0, 0,
+
                           0, 0, 0 )
                          0, 0, 0, 0 )
+
matrix3_result = -matrix3_a
matrix4_result = -matrix4_a
+
  
print( matrix4_result.GetRow(0)[0] == -1 ) # true
+
print( matrix3_result.GetRow(0)[0] == -1 ) # true
print( matrix4_result.GetRow(0)[1] == -2 ) # true
+
print( matrix3_result.GetRow(0)[1] == -2 ) # true
print( matrix4_result.GetRow(0)[2] == -3 ) # true
+
print( matrix3_result.GetRow(0)[2] == -3 ) # true
print( matrix4_result.GetRow(0)[3] == -4 ) # true
+
 
</syntaxhighlight>
 
</syntaxhighlight>
  
Line 107: Line 106:
 
The "equal to" operator. Performs a one-by-one comparison of the matrix array.
 
The "equal to" operator. Performs a one-by-one comparison of the matrix array.
  
<syntaxhighlight lang="Python">
+
See Also: [[#!=|!=]]
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0 )
+
matrix4_b = RLPy.RMatrix4( 1, 2, 3, 4,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0 )
+
  
print( matrix4_a == matrix4_b ) # true
+
<syntaxhighlight lang="python">
 +
matrix3_a = RLPy.RMatrix3( 1, 2, 3,
 +
                          0, 0, 0,
 +
                          0, 0, 0 )
 +
matrix3_b = RLPy.RMatrix3( 1, 2, 3,
 +
                          0, 0, 0,
 +
                          0, 0, 0 )
 +
print( matrix3_a == matrix3_b ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
Line 124: Line 122:
 
The "not equal to" operator. Performs a one-by-one comparison of the matrix array.
 
The "not equal to" operator. Performs a one-by-one comparison of the matrix array.
  
<syntaxhighlight lang="Python">
+
See Also: [[#==|==]]
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0 )
+
matrix4_b = RLPy.RMatrix4( 2, 2, 2, 2,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0 )
+
  
print( matrix4_a != matrix4_b ) # true
+
<syntaxhighlight lang="python">
 +
matrix3_a = RLPy.RMatrix3( 1, 2, 3,
 +
                          0, 0, 0,
 +
                          0, 0, 0 )
 +
matrix3_b = RLPy.RMatrix3( 4, 5, 6,
 +
                          0, 0, 0,
 +
                          0, 0, 0 )
 +
print( matrix3_a != matrix3_b ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
 
=== > ===
 
=== > ===
  
The "greater than" operator. Performs a one-by-one comparison of the matrix array.
+
The "greater than" operator. Performs a one-by-one comparison of the matrix array.
  
<syntaxhighlight lang="Python">
+
See Also: [[#>=|>=]]
matrix4_a = RLPy.RMatrix4( 1, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0 )
+
matrix4_b = RLPy.RMatrix4( 2, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0 )
+
  
print( matrix4_b > matrix4_a ) # true
+
<syntaxhighlight lang="python">
 +
matrix3_a = RLPy.RMatrix3( 2, 0, 0,
 +
                          0, 0, 0,
 +
                          0, 0, 0 )
 +
matrix3_b = RLPy.RMatrix3( 5, 0, 0,
 +
                          0, 0, 0,
 +
                          0, 0, 0 )
 +
print( matrix3_b >matrix3_a ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
Line 158: Line 154:
 
The "greater than or equal to" operator. Performs a one-by-one comparison of the matrix array.
 
The "greater than or equal to" operator. Performs a one-by-one comparison of the matrix array.
  
<syntaxhighlight lang="Python">
+
See Also: [[#>|>]]
matrix4_a = RLPy.RMatrix4( 1, 1, 1, 4,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0 )
+
matrix4_b = RLPy.RMatrix4( 1, 1, 1, 8,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0 )
+
  
print( matrix4_b >= matrix4_a ) # true
+
<syntaxhighlight lang="python">
 +
matrix3_a = RLPy.RMatrix3( 1, 1, 3,
 +
                          0, 0, 0,
 +
                          0, 0, 0 )
 +
matrix3_b = RLPy.RMatrix3( 1, 1, 9,
 +
                          0, 0, 0,
 +
                          0, 0, 0 )
 +
print( matrix3_b >= matrix3_a ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
Line 175: Line 170:
 
The "less than" operator. Performs a one-by-one comparison of the matrix array.
 
The "less than" operator. Performs a one-by-one comparison of the matrix array.
  
<syntaxhighlight lang="Python">
+
See Also: [[#<=|<=]]
matrix4_a = RLPy.RMatrix4( 2, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0 )
+
matrix4_b = RLPy.RMatrix4( 3, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0 )
+
  
print( matrix4_a < matrix4_b ) # true
+
<syntaxhighlight lang="python">
 +
matrix3_a = RLPy.RMatrix3( 2, 0, 0,
 +
                          0, 0, 0,
 +
                          0, 0, 0 )
 +
matrix3_b = RLPy.RMatrix3( 5, 0, 0,
 +
                          0, 0, 0,
 +
                          0, 0, 0 )
 +
print( matrix3_a< matrix3_b ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
Line 192: Line 186:
 
The "less than" operator. Performs a one-by-one comparison of the matrix array.
 
The "less than" operator. Performs a one-by-one comparison of the matrix array.
  
<syntaxhighlight lang="Python">
+
See Also: [[#<|<]]
matrix4_a = RLPy.RMatrix4( 2, 2, 1, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0 )
+
matrix4_b = RLPy.RMatrix4( 2, 2, 5, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0 )
+
  
print( matrix4_a <= matrix4_b ) # true
+
<syntaxhighlight lang="python">
 +
matrix3_a = RLPy.RMatrix3( 1, 1, 3,
 +
                          0, 0, 0,
 +
                          0, 0, 0 )
 +
matrix3_b = RLPy.RMatrix3( 1, 1, 9,
 +
                          0, 0, 0,
 +
                          0, 0, 0 )
 +
print( matrix3_a<= matrix3_b ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
Line 209: Line 202:
 
The "addition assignment" operator.
 
The "addition assignment" operator.
  
<syntaxhighlight lang="Python">
+
See Also: [[#+|+]]
matrix4 =  RLPy.RMatrix4( 1, 2, 3, 4,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0 )
+
matrix4 += RLPy.RMatrix4( 2, 2, 2, 2,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0 )
+
  
print( matrix4.GetRow(0)[0] == 1+2 ) # true
+
<syntaxhighlight lang="python">
print( matrix4.GetRow(0)[1] == 2+2 ) # true
+
matrix3 =  RLPy.RMatrix3( 1, 2, 3,
print( matrix4.GetRow(0)[2] == 3+2 ) # true
+
                          0, 0, 0,
print( matrix4.GetRow(0)[3] == 4+2 ) # true
+
                          0, 0, 0 )
 +
matrix3 += RLPy.RMatrix3( 2, 2, 2,
 +
                          0, 0, 0,
 +
                          0, 0, 0 )
 +
 
 +
print( matrix3.GetRow(0)[0] == 1+2 ) # true
 +
print( matrix3.GetRow(0)[1] == 2+2 ) # true
 +
print( matrix3.GetRow(0)[2] == 3+2 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
Line 229: Line 221:
 
The "subtraction assignment" operator.
 
The "subtraction assignment" operator.
  
<syntaxhighlight lang="Python">
+
See Also: [[#-|-]]
matrix4 =  RLPy.RMatrix4( 1, 2, 3, 4,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0 )
+
matrix4 -= RLPy.RMatrix4( 2, 2, 2, 2,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0,
+
                          0, 0, 0, 0 )
+
  
print( matrix4.GetRow(0)[0] == 1-2 ) # true
+
<syntaxhighlight lang="python">
print( matrix4.GetRow(0)[1] == 2-2 ) # true
+
matrix3 =  RLPy.RMatrix3( 1, 2, 3,
print( matrix4.GetRow(0)[2] == 3-2 ) # true
+
                          0, 0, 0,
print( matrix4.GetRow(0)[3] == 4-2 ) # true
+
                          0, 0, 0 )
 +
matrix3 -= RLPy.RMatrix3( 2, 2, 2,
 +
                          0, 0, 0,
 +
                          0, 0, 0 )
 +
 
 +
print( matrix3.GetRow(0)[0] == 1-2 ) # true
 +
print( matrix3.GetRow(0)[1] == 2-2 ) # true
 +
print( matrix3.GetRow(0)[2] == 3-2 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
 
=== *= ===
 
=== *= ===
  
The "multiplication assignment" operator. For the calculation method, refer to the '''*''' operator.
+
The "multiplication assignment" operator.
  
<syntaxhighlight lang="Python">
+
See Also: [[#*|*]]
matrix4 = RLPy.RMatrix4( 1, 2, 3, 4,
+
                        0, 0, 0, 0,
+
                        0, 0, 0, 0,
+
                        0, 0, 0, 0 )
+
matrix4 *= 2
+
  
print( matrix4.GetRow(0)[0] == 1*2 ) # true
+
<syntaxhighlight lang="python">
print( matrix4.GetRow(0)[1] == 2*2 ) # true
+
matrix3 =  RLPy.RMatrix3( 1, 2, 3,
print( matrix4.GetRow(0)[2] == 3*2 ) # true
+
                          0, 0, 0,
print( matrix4.GetRow(0)[3] == 4*2 ) # true
+
                          0, 0, 0 )
 +
matrix3 *= 2
 +
 
 +
print( matrix3.GetRow(0)[0] == 1*2 ) # true
 +
print( matrix3.GetRow(0)[1] == 2*2 ) # true
 +
print( matrix3.GetRow(0)[2] == 3*2 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
 
=== /= ===
 
=== /= ===
  
The "division assignment" operator. For the calculation method, refer to the '''/''' operator.
+
The "division assignment" operator.
  
<syntaxhighlight lang="Python">
+
See Also: [[#/|/]]
matrix4 = RLPy.RMatrix4( 1, 2, 3, 4,
+
                        0, 0, 0, 0,
+
                        0, 0, 0, 0,
+
                        0, 0, 0, 0 )
+
matrix4 /= 2
+
  
print( matrix4.GetRow(0)[0] == 1/2 ) # true
+
<syntaxhighlight lang="python">
print( matrix4.GetRow(0)[1] == 2/2 ) # true
+
matrix3 =  RLPy.RMatrix3( 1, 2, 3,
print( matrix4.GetRow(0)[2] == 3/2 ) # true
+
                          0, 0, 0,
print( matrix4.GetRow(0)[3] == 4/2 ) # true
+
                          0, 0, 0 )
 +
matrix3 /= 2
 +
 
 +
print( matrix3.GetRow(0)[0] == 1/2 ) # true
 +
print( matrix3.GetRow(0)[1] == 2/2 ) # true
 +
print( matrix3.GetRow(0)[2] == 3/2 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
 
== Member Functions ==
 
== Member Functions ==
  
=== MakeIdentity (self) ===
+
=== MakeIdentity ( self ) ===
  
 
This function can be used to initialize the 3x3 matrix.  It is equivalent to setting the matrix to:
 
This function can be used to initialize the 3x3 matrix.  It is equivalent to setting the matrix to:
  
:[1 0 0]
+
[1 0 0]
:[0 1 0]
+
[0 1 0]
:[0 0  1  0]
+
  [0 0 1]
:[0 0 1]
+
  
 
==== Returns ====
 
==== Returns ====
:This object - RLPy.RMatrix4
 
  
<syntaxhighlight lang="Python">
+
This object - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
matrix4 = RLPy.RMatrix4()
+
 
matrix4.MakeIdentity()
+
<syntaxhighlight lang="python">
 +
matrix3 = RLPy.RMatrix3()
 +
matrix3.MakeIdentity()
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== M (self, args) ===
+
=== M ( self, args ) ===
  
Get the value of an element in a 4x4 matrix by row and column index.
+
Get the value of an element in a 3x3 matrix by row and column index.
  
 
==== Parameters ====
 
==== Parameters ====
:'''nRow'''[IN] Index of the row in the matrix - int'''nCol'''[IN] Index of the column in the matrix - int
+
:'''nRow''' [IN] Index of the row in the matrix - int
 +
:'''nCol''' [IN] Index of the column in the matrix - int
  
 
==== Returns ====
 
==== Returns ====
:The matrix element specified by row and col - float
+
:The matrix element specified by row and column - float
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4 = RLPy.RMatrix4()
+
matrix3 = RLPy.RMatrix3()
matrix4.MakeIdentity()
+
matrix3.MakeIdentity()
  
print(matrix4.M(0,0)) #  
+
print(matrix3.M(0,0)) # <Swig Object of type 'float *' at 0x0000020316B015A0>
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== E (self, args) ===
+
=== E ( self, args ) ===
  
Get the value of an element in a 3x3 matrix by index number (from 0 to 15);
+
Get the value of an element in a 3x3 matrix by index number (from 0 to 8);
  
 
==== Parameters ====
 
==== Parameters ====
:'''nRow'''[IN] Index of the matrix.
+
:'''nRow''' [IN] Index of the matrix.
  
 
==== Returns ====
 
==== Returns ====
 
:The matrix element specified by index - float
 
:The matrix element specified by index - float
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4 = RLPy.RMatrix4()
+
matrix3 = RLPy.RMatrix3()
matrix4.MakeIdentity()
+
matrix3.MakeIdentity()
  
print(matrix4.E(0)) #  
+
print(matrix3.E(0)) #
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== GetRow (self, nR) ===
+
=== GetRow ( self, nRow ) ===
  
Retreive a row inside a 4x4 matrix.
+
Retreive a row inside a 3x3 matrix.
  
 
==== Parameters ====
 
==== Parameters ====
:'''nRow'''[IN] Index of the row in the matrix.
+
:'''nRow''' [IN] Index of the row in the matrix - int
  
 
==== Returns ====
 
==== Returns ====
:The row vector of the matrix - RLPy.RVector4
+
:The row vector of the matrix - [[IC_Python_API:RLPy_RVector3|RVector3]]
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4 = RLPy.RMatrix4()
+
matrix3 = RLPy.RMatrix3()
matrix4.MakeIdentity()
+
matrix3.MakeIdentity()
row0 = matrix4.GetRow(0)
+
row0 = matrix3.GetRow(0)
  
 
print(row0[0])
 
print(row0[0])
 
print(row0[1])
 
print(row0[1])
 
print(row0[2])
 
print(row0[2])
print(row0[3])
 
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== GetColumn (self, nC) ===
+
=== GetColumn( self, nCol ) ===
  
Retrieve a column inside a 4x4 matrix.
+
Retreive a column inside a 3x3 matrix.
  
 
==== Parameters ====
 
==== Parameters ====
:'''nRow'''[IN] Index of the column in the matrix.
+
:'''nCol''' [IN] Index of the row in the matrix - int
  
 
==== Returns ====
 
==== Returns ====
:The column vector of the matrix - RLPy.RVector4
+
:The column vector of the matrix - [[IC_Python_API:RLPy_RVector3|RVector3]]
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4 = RLPy.RMatrix4()
+
matrix3 = RLPy.RMatrix3()
matrix4.MakeIdentity()
+
matrix3.MakeIdentity()
col0 = matrix4.GetColumn(0)
+
col0 = matrix3.GetColumn(0)
  
 
print(col0[0])
 
print(col0[0])
 
print(col0[1])
 
print(col0[1])
 
print(col0[2])
 
print(col0[2])
print(col0[3])
 
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== Transpose (self) ===
+
=== Transpose( self ) ===
  
 
Obtain the transposed matrix by transposing the current m * n matrix into an n * m matrix by row-column swapping.
 
Obtain the transposed matrix by transposing the current m * n matrix into an n * m matrix by row-column swapping.
  
 
==== Returns ====
 
==== Returns ====
:A new matrix containing this matrix's transpose - RLPy.RMatrix4
+
:A new matrix containing this matrix's transpose - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4_orgin = RLPy.RMatrix4( 1, 2, 3, 4,
+
matrix3_orgin = RLPy.RMatrix3( 1, 2, 3,
                                5, 6, 7, 8,
+
                              4, 5, 6,
                                9, 10, 11, 12,
+
                              7, 8, 9 )
                              13, 14, 15, 16 )
+
matrix3_transpose = matrix3_orgin.Transpose()
matrix4_transpose = matrix4_orgin.Transpose()
+
row0 = matrix3_orgin.GetRow(0)
row0 = matrix4_orgin.GetRow(0)
+
col0 = matrix3_transpose.GetColumn(0)
col0 = matrix4_transpose.GetColumn(0)
+
  
 
print(row0[0] == col0[0])
 
print(row0[0] == col0[0])
 
print(row0[1] == col0[1])
 
print(row0[1] == col0[1])
 
print(row0[2] == col0[2])
 
print(row0[2] == col0[2])
print(row0[3] == col0[3])
 
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== TransposeTimes (self, mM) ===
+
=== TransposeTimes( self, mM ) ===
  
Multiply a transposed version of a 4x4 matrix with itself.
+
Multiply a transposed version of a 3x3 matrix with itself.
  
 
==== Parameters ====
 
==== Parameters ====
:'''mM'''[IN] the matrix - RLPy.RMatrix4
+
:'''mM''' [IN] the matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
  
 
==== Returns ====
 
==== Returns ====
:A new matrix. (this^T * mM) - RLPy.RMatrix4
+
:A new matrix. (this^T * mM) - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4_orgin = RLPy.RMatrix4( 1, 2, 3, 4,
+
matrix3_orgin = RLPy.RMatrix3( 1, 2, 3,
                                5, 6, 7, 8,
+
                              4, 5, 6,
                                9, 10, 11, 12,
+
                              7, 8, 9 )
                              13, 14, 15, 16 )
+
matrix3_transpose_value = RLPy.RMatrix3( 2, 0, 0,
matrix4_transpose_value = RLPy.RMatrix4( 2, 0, 0, 0,
+
                                         0, 2, 0,
                                         0, 2, 0, 0,
+
                                         0, 0, 2 )
                                         0, 0, 2, 0,
+
matrix3_transpose_times = matrix3_orgin.TransposeTimes(matrix3_transpose_value)
                                        0, 0, 0, 2 )
+
row0 = matrix3_orgin.GetRow(0)
matrix4_transpose_times = matrix4_orgin.TransposeTimes(matrix4_transpose_value)
+
col0 = matrix3_transpose_times.GetColumn(0)
row0 = matrix4_orgin.GetRow(0)
+
col0 = matrix4_transpose_times.GetColumn(0)
+
  
 
print(row0[0]*2 == col0[0])
 
print(row0[0]*2 == col0[0])
 
print(row0[1]*2 == col0[1])
 
print(row0[1]*2 == col0[1])
 
print(row0[2]*2 == col0[2])
 
print(row0[2]*2 == col0[2])
print(row0[3]*2 == col0[3])
 
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== TimesTranspose (self, mM) ===
+
=== TimesTranspose( self, mM ) ===
  
Multiply this 4x4 matrix with a transposed version of itself.
+
Multiply this 3x3 matrix with a transposed version of itself.
  
 
==== Parameters ====
 
==== Parameters ====
:'''mM'''[IN] the matrix - RLPy.RMatrix4
+
:'''mM''' [IN] the matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
  
 
==== Returns ====
 
==== Returns ====
:A new matrix. (this * M^T) - RLPy.RMatrix4
+
:A new matrix. (this * M^T) - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4_orgin = RLPy.RMatrix4( 1, 2, 3, 4,
+
matrix3_orgin = RLPy.RMatrix3( 1, 2, 3,
                                5, 6, 7, 8,
+
                              4, 5, 6,
                                9, 10, 11, 12,
+
                              7, 8, 9 )
                              13, 14, 15, 16 )
+
matrix3_transpose_value = RLPy.RMatrix3( 3, 0, 0,
matrix4_transpose_value = RLPy.RMatrix4( 3, 0, 0, 0,
+
                                         0, 3, 0,
                                         0, 3, 0, 0,
+
                                         0, 0, 3 )
                                         0, 0, 3, 0,
+
matrix3_times_transpose = matrix3_orgin.TimesTranspose(matrix3_transpose_value)
                                        0, 0, 0, 3 )
+
row0 = matrix3_orgin.GetColumn(0)
matrix4_times_transpose = matrix4_orgin.TimesTranspose(matrix4_transpose_value)
+
col0 = matrix3_times_transpose.GetColumn(0)
row0 = matrix4_orgin.GetColumn(0)
+
col0 = matrix4_times_transpose.GetColumn(0)
+
  
 
print(row0[0]*3 == col0[0])
 
print(row0[0]*3 == col0[0])
 
print(row0[1]*3 == col0[1])
 
print(row0[1]*3 == col0[1])
 
print(row0[2]*3 == col0[2])
 
print(row0[2]*3 == col0[2])
print(row0[3]*3 == col0[3])
 
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== Inverse (self) ===
+
=== Inverse( self ) ===
  
Obtain the inverse (reciprocal) of this 4x4 matrix (A^-1).
+
Obtain the inverse (reciprocal) of this 3x3 matrix (A^-1).
  
 
==== Returns ====
 
==== Returns ====
:A new matrix containing this matrix's inverse - RLPy.RMatrix4
+
:A new matrix containing this matrix's inverse - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
+
matrix3_value = RLPy.RMatrix3( 1, 2, 3,
                               1, 1,-1,-2,
+
                               2, 3, 4,
                              1,-1,-1, 2,
+
                               4, 2, 1 )
                               1,-2, 1,-1 )
+
matrix3_inverse = matrix3_value.Inverse()
matrix4_inverse = matrix4_value.Inverse()
+
row0 = matrix3_inverse.GetRow(0)
row0_inverse = matrix4_inverse.GetRow(0)
+
  
print(row0_inverse[0])
+
print(row0[0])
print(row0_inverse[1])
+
print(row0[1])
print(row0_inverse[2])
+
print(row0[2])
print(row0_inverse[3])
+
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== Adjoint (self) ===
+
=== Adjoint( self ) ===
  
Adjugate this 4x4 matrix.
+
Adjugate this 3x3 matrix.
  
 
==== Returns ====
 
==== Returns ====
:A new matrix containing this matrix's adjoint - RLPy.RMatrix4
+
:A new matrix containing this matrix's adjoint - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
+
matrix3_value = RLPy.RMatrix3( 1, 2, 3,
                               1, 1,-1,-2,
+
                               2, 3, 4,
                              1,-1,-1, 2,
+
                               4, 2, 1 )
                               1,-2, 1,-1 )
+
matrix3_Adjoint = matrix3_value.Adjoint()
matrix4_Adjoint = matrix4_value.Adjoint()
+
row0 = matrix3_Adjoint.GetRow(0)
row0_Adjoint = matrix4_Adjoint.GetRow(0)
+
  
print(row0_Adjoint[0])
+
print(row0[0])
print(row0_Adjoint[1])
+
print(row0[1])
print(row0_Adjoint[2])
+
print(row0[2])
print(row0_Adjoint[3])
+
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== AdjointTranspose (self) ===
+
=== AdjointTranspose( self ) ===
  
Adjugate and transpose this 4x4 matrix.
+
Adjugate and transpose this 3x3 matrix.
  
 
==== Returns ====
 
==== Returns ====
:A new matrix - RLPy.RMatrix4
+
:A new adjugated and transposed matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
+
matrix3_value = RLPy.RMatrix3( 1, 2, 3,
                               1, 1,-1,-2,
+
                               2, 3, 4,
                              1,-1,-1, 2,
+
                               4, 2, 1 )
                               1,-2, 1,-1 )
+
matrix3_Adjoint_transpose = matrix3_value.AdjointTranspose()
matrix4_Adjoint_transpose = matrix4_value.AdjointTranspose()
+
col0_Adjoint_transpose = matrix3_Adjoint_transpose.GetColumn(0)
col0_Adjoint_transpose = matrix4_Adjoint_transpose.GetColumn(0)
+
  
print(col0_Adjoint_transpose[0] == row0_Adjoint[0])
+
print(col0_Adjoint_transpose[0])
print(col0_Adjoint_transpose[1] == row0_Adjoint[1])
+
print(col0_Adjoint_transpose[1])
print(col0_Adjoint_transpose[2] == row0_Adjoint[2])
+
print(col0_Adjoint_transpose[2])
print(col0_Adjoint_transpose[3] == row0_Adjoint[3])
+
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== InverseTranspose (self) ===
+
=== InverseTranspose( self ) ===
  
Invert and transpose this 4x4 matrix.
+
Invert and transpose this 3x3 matrix.
  
 
==== Returns ====
 
==== Returns ====
:A new matrix - RLPy.RMatrix4
+
:A new inverted and transposed matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
+
matrix3_value = RLPy.RMatrix3( 1, 2, 3,
                               1, 1,-1,-2,
+
                               2, 3, 4,
                              1,-1,-1, 2,
+
                               4, 2, 1 )
                               1,-2, 1,-1 )
+
matrix3_inverse_transpose = matrix3_value.InverseTranspose()
matrix4_inverse_transpose = matrix4_value.InverseTranspose()
+
row0_inverse_transpose = matrix3_inverse_transpose.GetRow(0)
col0_inverse_transpose = matrix4_inverse_transpose.GetColumn(0)
+
  
print(col0_inverse_transpose[0] == row0_inverse[0])
+
print(row0_inverse_transpose[0])
print(col0_inverse_transpose[1] == row0_inverse[1])
+
print(row0_inverse_transpose[1])
print(col0_inverse_transpose[2] == row0_inverse[2])
+
print(row0_inverse_transpose[2])
print(col0_inverse_transpose[3] == row0_inverse[3])
+
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== Determinant (self) ===
+
=== Determinant( self ) ===
  
Obtain the scalar value for this 4x4 matrix (|A|).
+
Obtain the scalar value for this 3x3 matrix (|A|).
  
 
==== Returns ====
 
==== Returns ====
 
:The determinant of the matrix - float
 
:The determinant of the matrix - float
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
+
matrix3_value = RLPy.RMatrix3( 1, 2, 3,
                               1, 1,-1,-2,
+
                               2, 3, 4,
                              1,-1,-1, 2,
+
                               4, 2, 1 )
                               1,-2, 1,-1 )
+
 
print(matrix4_value.Determinant())
+
print(matrix3_value.Determinant())
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== MaxColumn (self) ===
+
=== MaxColumn( self ) ===
  
Find the maximum absolute value within this 4x4 matrix, and return the column in which the value is located.  If all of the elements within the 4x4 matrix are 0 then return -1.
+
Find the maximum absolute value within this 3x3 matrix, and return the column in which the value is located.  If all of the elements within the 3x3 matrix are 0 then return -1.
  
 
==== Returns ====
 
==== Returns ====
:Return index of column of M containing maximum abs entry, or -1 if M = 0 - int
+
:Index of column of M containing maximum abs entry, or -1 if M = 0 - int
 +
 
 +
<syntaxhighlight lang="python">
 +
matrix3_value = RLPy.RMatrix3( 10, 20, -30,
 +
                                0,  0,  0,
 +
                                0,  0,  0 )
  
<syntaxhighlight lang="Python">
+
print(matrix3_value.MaxColumn()) # column:2 ->abs(-30)
matrix4_column_value = RLPy.RMatrix4( 1, 2, 3,-5,
+
                                      0, 0, 0, 0,
+
                                      0, 0, 0, 0,
+
                                      0, 0, 0, 0 )
+
print(matrix4_column_value.MaxColumn()) # column:3 -> abs(-5)
+
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== MaxRow (self) ===
+
=== MaxRow( self ) ===
  
Find the maximum absolute value within this 4x4 matrix, and return the row in which the value is located.  If all of the elements within the 4x4 matrix are 0 then return -1.
+
Find the maximum absolute value within this 3x3 matrix, and return the row in which the value is located.  If all of the elements within the 3x3 matrix are 0 then return -1.
  
 
==== Returns ====
 
==== Returns ====
:Return index of row of M containing maximum abs entry, or -1 if M = 0 - int
+
:Index of row of M containing maximum abs entry, or -1 if M = 0 - int
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4_row_value = RLPy.RMatrix4( 1, 0, 0, 0,
+
matrix3_value = RLPy.RMatrix3( 10, 0, 0,
                                  2, 0, 0, 0,
+
                              20, 0, 0,
                                  3, 0, 0, 0,
+
                              -30, 0, 0 )
                                  -5, 0, 0, 0 )
+
print(matrix3_value.MaxRow()) # Row:2 ->abs(-30)
print(matrix4_value.MaxRow()) # Row:3 -> abs(-5)
+
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== OneNorm (self) ===
+
=== OneNorm( self ) ===
  
 
Return the sum of the column elements that contain the largest absolute values.
 
Return the sum of the column elements that contain the largest absolute values.
  
 
==== Returns ====
 
==== Returns ====
:Return Norm - float
+
:Norm of this 3x3 matrix - float
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4_row_value = RLPy.RMatrix4( 1, 0, 0, 0,
+
matrix3_row_value = RLPy.RMatrix3( 10, 0, 0,
                                   2, 0, 0, 0,
+
                                   20, 0, 0,
                                  3, 0, 0, 0,
+
                                   -30, 0, 0 )
                                   -5, 0, 0, 0 )
+
print(matrix3_row_value.OneNorm()) # 10+20+abs(-30) = 60
print(matrix4_row_value.OneNorm()) # 11 -> 1+2+abs(-5)
+
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== InfNorm (self) ===
+
=== InfNorm( self ) ===
  
 
Return the sum of the row elements that contain the largest absolute values.
 
Return the sum of the row elements that contain the largest absolute values.
  
 
==== Returns ====
 
==== Returns ====
:Return InfNorm - float
+
:InfNorm of this 3x3 matrix - float
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4_column_value = RLPy.RMatrix4( 1, 2, 3,-5,
+
matrix3_column_value = RLPy.RMatrix3( 10, 20, -30,
                                      0, 0, 0, 0,
+
                                      0, 0,   0,
                                      0, 0, 0, 0,
+
                                      0, 0,   0 )
                                      0, 0, 0, 0 )
+
print(matrix3_column_value.InfNorm()) # 10+20+abs(-30) = 60
print(matrix4_column_value.InfNorm()) # 11 -> 1+2+abs(-5)
+
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== FromRTS (self, kRotate, kTranslate, kScale) ===
+
=== FromAxisAngle( self, rkAxis, fAngle ) ===
  
Apply rotate, translate, and scale data to a 4x4 matrix.
+
Rotation matrix from axis angle。
  
 
==== Parameters ====
 
==== Parameters ====
:'''kRotate  '''[IN] Rotate Matrix - RLPy.RMatrix3
+
:'''rkAxis''' [IN] axis vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
:'''kTranslate'''[IN] Translate vector - RLPy.RVector3
+
:'''fAngle''' [IN] angle in radians - float
:'''kScale  '''[IN] Scale vector - RLPy.RVector3
+
  
 
==== Returns ====
 
==== Returns ====
:Return a new matrix from RTS - RLPy.RMatrix4
+
:A new matrix from specified axis angle - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
rotate = RLPy.RMatrix3( 1, 0, 0,
+
matrix3_orgin = RLPy.RMatrix3()
                        0, 1, 0,
+
matrix3_orgin.MakeIdentity()
                        0, 0, 1 )
+
translate = RLPy.RVector3( 1, 0, 0 )
+
scale = RLPy.RVector3( 2, 2, 2 )
+
matrix4_result =  RLPy.RMatrix4().FromRTS( rotate, translate, scale )
+
row0 = matrix4_result.GetRow(0)
+
  
print(row0[0])
+
x_axis_vector = RLPy.RVector3( 1, 0, 0 # axis = "X"
print(row0[1])
+
y_axis_vector = RLPy.RVector3( 0, 1, 0 ) # axis = "Y"
print(row0[2])
+
z_axis_vector = RLPy.RVector3( 0, 0, 1 ) # axis = "Z"   
print(row0[3])
+
</syntaxhighlight>
+
 
+
=== GetSimpleRTS (self, rkRotate, rkTranslate, rkScale) ===
+
 
+
Retrieve rotation, translation, and scale data from this 4x4 matrix.
+
 
+
==== Parameters ====
+
:'''rkRotate''' [IN] Angle of x-axis in radians - float
+
:'''rkTranslate'''[IN] Angle of y-axis in radians - float
+
:'''rkScale  '''[IN] Angle of z-axis in radians - float
+
 
+
==== Returns ====
+
 
+
<syntaxhighlight lang="Python">
+
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
+
                              1, 1,-1,-2,
+
                              1,-1,-1, 2,
+
                              1,-2, 1,-1 )
+
rotate = RLPy.RMatrix3()
+
translate = RLPy.RVector3()
+
scale = RLPy.RVector3()
+
matrix4_value.GetSimpleRTS( rotate, translate, scale )
+
row0 = rotate.GetRow(0)
+
 
+
print(row0[0])
+
print(row0[1])
+
print(row0[2])
+
 
+
print(translate[0])
+
print(translate[1])
+
print(translate[2])
+
  
print(scale[0])
+
matrix3_orgin.FromAxisAngle( x_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
print(scale[1])
+
matrix3_orgin.FromAxisAngle( y_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
print(scale[2])      
+
matrix3_orgin.FromAxisAngle( z_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== GetSimpleRotate (self, rkRotate) ===
+
=== RotationX( self, fAngle ) ===
  
Retrieve rotation data from this 4x4 matrix.
+
Rotate this 3x3 matrix around the x-axis.
  
 
==== Parameters ====
 
==== Parameters ====
:'''rkRotate'''[IN] Rotation Matrix - RLPy.RMatrix3
+
fAngle  [IN] angle in radians - float
  
 
==== Returns ====
 
==== Returns ====
:
+
:The rotated 3x3 matrix around the x-axis - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
+
matrix3_orgin = RLPy.RMatrix3()
                              1, 1,-1,-2,
+
matrix3_orgin.MakeIdentity()
                              1,-1,-1, 2,
+
matrix3_orgin.RotationX( 90 * RLPy.RMath.CONST_DEG_TO_RAD )
                              1,-2, 1,-1
+
rotate = RLPy.RMatrix3()
+
matrix4_value.GetSimpleRotate( rotate )
+
row0 = rotate.GetRow(0)
+
 
+
print(row0[0])
+
print(row0[1])
+
print(row0[2])  
+
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== SetTranslateZero (self) ===
+
=== RotationY( self, fAngle ) ===
  
Set the translation data in this 4x4 matrix to 0.
+
Rotate this 3x3 matrix around the y-axis。
 
+
<syntaxhighlight lang="Python">
+
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
+
                              1, 1,-1,-2,
+
                              1,-1,-1, 2,
+
                              1,-2, 1,-1
+
matrix4_value.SetTranslateZero()
+
row3 = matrix4_value.GetRow(3)
+
 
+
print(row3[0] == 0)
+
print(row3[1] == 0)
+
print(row3[2] == 0)
+
</syntaxhighlight>
+
 
+
=== RotationX (self, fAngle) ===
+
 
+
Rotation matrix for rotations around x-axis。
+
  
 
==== Parameters ====
 
==== Parameters ====
:'''fAngle'''[IN] angle in radians - float
+
:'''fAngle''' [IN] angle in radians - float
  
 
==== Returns ====
 
==== Returns ====
:Return a new matrix of for rotations around x-axis - RLPy.RMatrix4
+
:The rotated 3x3 matrix around the y-axis - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4_orgin = RLPy.RMatrix4()
+
matrix3_orgin = RLPy.RMatrix3()
matrix4_orgin.MakeIdentity()
+
matrix3_orgin.MakeIdentity()
matrix4_orgin.RotationX( 90 * RLPy.RMath.CONST_DEG_TO_RAD )
+
matrix3_orgin.RotationY( 90 * RLPy.RMath.CONST_DEG_TO_RAD )
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== RotationY (self, fAngle) ===
+
=== RotationZ( self, fAngle ) ===
  
Rotation matrix for rotations around y-axis.
+
Rotation this 3x3 matrix around the z-axis.
  
 
==== Parameters ====
 
==== Parameters ====
:'''fAngle'''[IN] angle in radians - float
+
:'''fAngle''' [IN] angle in radians - float
  
 
==== Returns ====
 
==== Returns ====
:Return a new matrix of for rotations around y-axis - RLPy.RMatrix4
+
:A new 3x3 matrix of for rotations around z-axis - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4_orgin = RLPy.RMatrix4()
+
matrix3_orgin = RLPy.RMatrix3()
matrix4_orgin.MakeIdentity()
+
matrix3_orgin.MakeIdentity()
matrix4_orgin.RotationY( 90 * RLPy.RMath.CONST_DEG_TO_RAD )
+
matrix3_orgin.RotationZ( 90 * RLPy.RMath.CONST_DEG_TO_RAD )
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== RotationZ (self, fAngle) ===
+
=== AccuScale( self, rkScale ) ===
  
Rotation matrix for rotations around z-axis.
+
Accumulate 3x3 matrix with scale vector.
  
 
==== Parameters ====
 
==== Parameters ====
:'''fAngle'''[IN] angle in radians - float
+
rkScale [IN] Scale vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
  
 
==== Returns ====
 
==== Returns ====
:Return a new matrix of for rotations around z-axis - RLPy.RMatrix4
+
:A newly scaled matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4_orgin = RLPy.RMatrix4()
+
matrix3_orgin = RLPy.RMatrix3()
matrix4_orgin.MakeIdentity()
+
matrix3_orgin.MakeIdentity()
matrix4_orgin.RotationZ( 90 * RLPy.RMath.CONST_DEG_TO_RAD )
+
scale_vector = RLPy.RVector3( 2, 2, 2 )
 +
matrix3_orgin.AccuScale(scale_vector)
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== RotateAxisAngle (self, rkAxis, fAngle) ===
+
=== ToEulerAngle( self, rkScaleself, Order, rx, ry, rz ) ===
  
Rotation matrix from axis angle.
+
Convert 3x3 matrix to Euler angles.
  
 
==== Parameters ====
 
==== Parameters ====
:'''rkAxis'''[IN] axis vector - RLPy.RVector3
+
:'''Order''' [IN] Euler order - RLPy.Rotation_Order
:'''fAngle'''[IN] angle in radians - float
+
:'''rx''' [OUT] Angle of x-axis in radians - float
 +
:'''ry''' [OUT] Angle of y-axis in radians - float
 +
:'''rz''' [OUT] Angle of z-axis in radians - float
  
==== Returns ====
+
<syntaxhighlight lang="python">
:Return a new matrix from specified axis angle - RLPy.RMatrix4
+
matrix3_value = RLPy.RMatrix3( -0, -0,  1,
 +
                                0, -1, -0,
 +
                                1,  0, -0 )
 +
euler_angle_x = 0
 +
euler_angle_y = 0
 +
euler_angle_z = 0
 +
result = matrix3_value.ToEulerAngle( RLPy.EEulerOrder_XYZ, euler_angle_x, euler_angle_y, euler_angle_z )
  
<syntaxhighlight lang="Python">
+
print(result[0] * RLPy.RMath.CONST_RAD_TO_DEG) # 180
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
+
print(result[1] * RLPy.RMath.CONST_RAD_TO_DEG) # 90
                              1, 1,-1,-2,
+
print(result[2] * RLPy.RMath.CONST_RAD_TO_DEG) # 0
                              1,-1,-1, 2,
+
                              1,-2, 1,-1
+
x_axis_vector = RLPy.RVector3( 1, 0, 0 )  # axis = "X"
+
y_axis_vector = RLPy.RVector3( 0, 1, 0 ) # axis = "Y"
+
z_axis_vector = RLPy.RVector3( 0, 0, 1 )  # axis = "Z"   
+
matrix4_value.RotateAxisAngle( x_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
+
matrix4_value.RotateAxisAngle( y_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
+
matrix4_value.RotateAxisAngle( z_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
+
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== FromEulerAngle (self, Oreder, rx, ry, rz) ===
+
=== FromEulerAngle( self, Order, rx, ry, rz ) ===
  
Convert Euler angle to a 4x4 matrix according to a rotation axis order.
+
Convert Euler angle to a 3x3 matrix according to a rotation axis order.
  
 
==== Parameters ====
 
==== Parameters ====
:'''Oreder'''[IN] Euler order - RLPy.Rotation_Order'''rx'''[IN] Angle of x-axis in radians - float'''ry'''[IN] Angle of y-axis in radians - float'''rz'''[IN] Angle of z-axis in radians - float
+
:'''Order''' [IN] Euler order - RLPy.Rotation_Order
 +
:'''rx''' [IN] Angle of x-axis in radians - float
 +
:'''ry''' [IN] Angle of y-axis in radians - float
 +
:'''rz''' [IN] Angle of z-axis in radians - float
  
 
==== Returns ====
 
==== Returns ====
:Return a new matrix from specified axis angle - RLPy.RMatrix4
+
:A new matrix from specified axis angle - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
 +
matrix3_orgin = RLPy.RMatrix3()
 
euler_angle_x = 90 * RLPy.RMath.CONST_DEG_TO_RAD
 
euler_angle_x = 90 * RLPy.RMath.CONST_DEG_TO_RAD
 
euler_angle_y = 0
 
euler_angle_y = 0
 
euler_angle_z = 0
 
euler_angle_z = 0
matrix4_result = RLPy.RMatrix4().FromEulerAngle( RLPy.EEulerOrder_XYZ, euler_angle_x, euler_angle_y, euler_angle_z)
+
matrix3_result = matrix3_orgin.FromEulerAngle( RLPy.EEulerOrder_XYZ, euler_angle_x, euler_angle_y, euler_angle_z)
row0 = matrix4_result[0].GetRow(0)
+
row0 = matrix3_result[0].GetRow(0)
  
 
print(row0[0])
 
print(row0[0])
 
print(row0[1])
 
print(row0[1])
 
print(row0[2])
 
print(row0[2])
print(row0[3])
 
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== SetSR (self, mSR) ===
+
=== FromSphereUnitVec( self, rkVec ) ===
  
Set scale and rotation part of the matrix。
+
Convert Euler angle to matrix.
  
 
==== Parameters ====
 
==== Parameters ====
:'''mSR'''[IN] 3x3 matrix - RLPy.RMatrix3
+
:'''rkVec''' [IN] vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
  
 
==== Returns ====
 
==== Returns ====
:Return a new 4x4 matrix - RLPy.RMatrix4
+
:A new 3x3 matrix from sphere unit vector - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4_orgin = RLPy.RMatrix4()
+
vector = RLPy.RVector3( 0, 1, 0 )
matrix4_orgin.MakeIdentity()
+
matrix3_result = RLPy.RMatrix3().FromSphereUnitVec( vector )
matrix3_rotate_value = RLPy.RMatrix3( 1, 0, 0,
+
row0 = matrix3_result.GetRow(0)
                                      0, 1, 0,
+
                                      0, 0, 1 )
+
matrix4_orgin.SetSR(matrix3_rotate_value)
+
</syntaxhighlight>
+
 
+
=== GetSR (self) ===
+
 
+
Get scale and rotation part of the matrix。
+
 
+
==== Returns ====
+
:Return a 3x3 matrix - RLPy.RMatrix3
+
  
<syntaxhighlight lang="Python">
 
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 
                              1, 1,-1,-2,
 
                              1,-1,-1, 2,
 
                              1,-2, 1,-1
 
result = matrix4_value.GetSR()
 
row0 = result.GetRow(0)
 
 
print(row0[0])
 
print(row0[0])
 
print(row0[1])
 
print(row0[1])
Line 849: Line 743:
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== SetTranslate (self, vTranslate) ===
+
=== IsRightHandCoordinate( self ) ===
  
Set translate of the matrix。
+
Obtain this 3x3 matrix's coordinate system.  '''True''' stands for right-handed coordinate system while '''False''' for left-handed.
 
+
==== Parameters ====
+
:'''vTranslate'''[IN] Translate vector - RLPy.RVector3
+
  
 
==== Returns ====
 
==== Returns ====
:Return a new matrix with the specified translation - RLPy.RMatrix4
+
:'''True''' Right hand coordinate - bool
 +
:'''False''' Left hand coordinate - bool
  
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python">
matrix4_orgin = RLPy.RMatrix4()
+
matrix3_value = RLPy.RMatrix3( 1, 0, 0,
matrix4_orgin.MakeIdentity()
+
                              0, 1, 0,
matrix4_orgin.SetTranslate(RLPy.RVector3( 1, 2, 3 ) )
+
                              0, 0, 1 )
</syntaxhighlight>
+
result = matrix3_value.IsRightHandCoordinate()
 
+
=== GetTranslate (self) ===
+
 
+
Get translate of the matrix。
+
 
+
==== Returns ====
+
:Return a translate vector - RLPy.RVector3
+
 
+
<syntaxhighlight lang="Python">
+
matrix4_orgin = RLPy.RMatrix4()
+
matrix4_orgin.MakeIdentity()
+
matrix4_orgin.SetTranslate(RLPy.RVector3( 1, 2, 3 ) )
+
result = matrix4_orgin.GetTranslate()
+
 
+
print(result[0] == 1)
+
print(result[1] == 2)
+
print(result[2] == 3)
+
</syntaxhighlight>
+
 
+
=== AccuScale (self, rkScale) ===
+
 
+
Accumulate matrix with scale vector。
+
 
+
==== Parameters ====
+
:'''rkScale'''[IN] Scale vector - RLPy.RVector3
+
 
+
==== Returns ====
+
:Return a new matrix (*this) *= Accumulate - RLPy.RMatrix4
+
 
+
<syntaxhighlight lang="Python">
+
matrix4_orgin = RLPy.RMatrix4()
+
matrix4_orgin.MakeIdentity()
+
matrix4_orgin.AccuScale(RLPy.RVector3( 2, 2, 2 ) )
+
matrix4_orgin.AccuScale(RLPy.RVector3( 3, 3, 3 ) )
+
result = matrix4_orgin.GetSR()
+
row0 = result.GetRow(0)
+
print(row0[0] == 2*3)
+
row1 = result.GetRow(1)
+
print(row1[1] == 2*3)
+
row2 = result.GetRow(2)
+
print(row2[2] == 2*3)
+
</syntaxhighlight>
+
 
+
=== AccuRotate (self, rkRotate) ===
+
 
+
Accumulate matrix with rotation matrix。
+
 
+
==== Parameters ====
+
:'''rkRotate'''[IN] Rotation matrix - RLPy.RMatrix3
+
 
+
==== Returns ====
+
:Return a new matrix (*this) *= Accumulate - RLPy.RMatrix4
+
 
+
<syntaxhighlight lang="Python">
+
matrix4_orgin = RLPy.RMatrix4()
+
matrix4_orgin.MakeIdentity()
+
matrix3_orgin = RLPy.RMatrix3()
+
matrix3_orgin.FromAxisAngle( RLPy.RVector3( 0, 1, 0 ), 90 * RLPy.RMath.CONST_DEG_TO_RAD )
+
matrix4_orgin.AccuRotate(matrix3_orgin)
+
matrix4_orgin.AccuRotate(matrix3_orgin)
+
rotate = RLPy.RMatrix3()
+
matrix4_orgin.GetSimpleRotate( rotate )
+
row0 = rotate.GetRow(0)
+
print(row0[0])
+
print(row0[1])
+
print(row0[2])
+
</syntaxhighlight>
+
 
+
=== AccuTranslate (self, rkTranslate) ===
+
 
+
Accumulate matrix with translate vector。
+
 
+
==== Parameters ====
+
:'''rkTranslate'''[IN] Translate vector - RLPy.RVector3
+
 
+
==== Returns ====
+
:Return a new matrix (*this) *= Accumulate - RLPy.RMatrix4
+
  
<syntaxhighlight lang="Python">
+
print(result)
matrix4_orgin = RLPy.RMatrix4()
+
matrix4_orgin.MakeIdentity()
+
matrix4_orgin.AccuTranslate(RLPy.RVector3( 1, 2, 3 ) )
+
matrix4_orgin.AccuTranslate(RLPy.RVector3( 2, 2, 2 ) )
+
row3 = matrix4_orgin.GetRow(3)
+
print(row3[0] == 1+2)
+
print(row3[1] == 2+2)
+
print(row3[2] == 2+3)
+
 
</syntaxhighlight>
 
</syntaxhighlight>

Revision as of 18:38, 7 April 2020

Contents

Main article: Modules.
Last modified: 04/7/2020

Description

This class represent a standard 3x3 matrix. This class provides access to RLPy's internal 3x3 matrix operators and related functions. iClone uses row-major order where consecutive elements of a row reside next to each other, and the data is read from left to right, top to bottom, in a vertical zig-zag:

[0, 1, 2]
[3, 4, 5]
[6, 7, 8]

Operators

+

The "addition" operator.

See Also: +=

matrix3_a = RLPy.RMatrix3( 1, 2, 3,
                           0, 0, 0,
                           0, 0, 0 )
matrix3_b = RLPy.RMatrix3( 2, 2, 2,
                           0, 0, 0,
                           0, 0, 0 )
matrix3_result = matrix3_a + matrix3_b

print( matrix3_result.GetRow(0)[0] == 1+2 ) # true
print( matrix3_result.GetRow(0)[1] == 2+2 ) # true
print( matrix3_result.GetRow(0)[2] == 3+2 ) # true

-

The "subtraction" operator.

See Also: -=

matrix3_a = RLPy.RMatrix3( 1, 2, 3,
                           0, 0, 0,
                           0, 0, 0 )
matrix3_b = RLPy.RMatrix3( 2, 2, 2,
                           0, 0, 0,
                           0, 0, 0 )
matrix3_result = matrix3_a - matrix3_b

print( matrix3_result.GetRow(0)[0] == 1-2 ) # true
print( matrix3_result.GetRow(0)[1] == 2-2 ) # true
print( matrix3_result.GetRow(0)[2] == 3-2 ) # true

*

The "multiplication" operator.

See Also: *=

matrix3_a = RLPy.RMatrix3( 1, 2, 3,
                           0, 0, 0,
                           0, 0, 0 )
matrix3_b = RLPy.RMatrix3( 2, 0, 0,
                           2, 0, 0,
                           2, 0, 0 )
matrix3_result = matrix3_a * matrix3_b
print( matrix3_result.GetRow(0)[0] == 1*2 + 2*2 + 3*2 ) # true

/

The "division" operator.

See Also: /=

matrix3_a = RLPy.RMatrix3( 1, 2, 3,
                           0, 0, 0,
                           0, 0, 0 )
matrix3_result = matrix3_a / 2

print( matrix3_result.GetRow(0)[0] == 1/2 ) # true
print( matrix3_result.GetRow(0)[1] == 2/2 ) # true
print( matrix3_result.GetRow(0)[2] == 3/2 ) # true

-

The "unary minus" operator.

matrix3_a = RLPy.RMatrix3( 1, 2, 3,
                           0, 0, 0,
                           0, 0, 0 )
matrix3_result = -matrix3_a

print( matrix3_result.GetRow(0)[0] == -1 ) # true
print( matrix3_result.GetRow(0)[1] == -2 ) # true
print( matrix3_result.GetRow(0)[2] == -3 ) # true

==

The "equal to" operator. Performs a one-by-one comparison of the matrix array.

See Also: !=

matrix3_a = RLPy.RMatrix3( 1, 2, 3,
                           0, 0, 0,
                           0, 0, 0 )
matrix3_b = RLPy.RMatrix3( 1, 2, 3,
                           0, 0, 0,
                           0, 0, 0 )
print( matrix3_a == matrix3_b ) # true

!=

The "not equal to" operator. Performs a one-by-one comparison of the matrix array.

See Also: ==

matrix3_a = RLPy.RMatrix3( 1, 2, 3,
                           0, 0, 0,
                           0, 0, 0 )
matrix3_b = RLPy.RMatrix3( 4, 5, 6,
                           0, 0, 0,
                           0, 0, 0 )
print( matrix3_a != matrix3_b ) # true

>

The "greater than" operator. Performs a one-by-one comparison of the matrix array.

See Also: >=

matrix3_a = RLPy.RMatrix3( 2, 0, 0,
                           0, 0, 0,
                           0, 0, 0 )
matrix3_b = RLPy.RMatrix3( 5, 0, 0,
                           0, 0, 0,
                           0, 0, 0 )
print( matrix3_b >matrix3_a ) # true

>=

The "greater than or equal to" operator. Performs a one-by-one comparison of the matrix array.

See Also: >

matrix3_a = RLPy.RMatrix3( 1, 1, 3,
                           0, 0, 0,
                           0, 0, 0 )
matrix3_b = RLPy.RMatrix3( 1, 1, 9,
                           0, 0, 0,
                           0, 0, 0 )
print( matrix3_b >= matrix3_a ) # true

<

The "less than" operator. Performs a one-by-one comparison of the matrix array.

See Also: <=

matrix3_a = RLPy.RMatrix3( 2, 0, 0,
                           0, 0, 0,
                           0, 0, 0 )
matrix3_b = RLPy.RMatrix3( 5, 0, 0,
                           0, 0, 0,
                           0, 0, 0 )
print( matrix3_a< matrix3_b ) # true

<=

The "less than" operator. Performs a one-by-one comparison of the matrix array.

See Also: <

matrix3_a = RLPy.RMatrix3( 1, 1, 3,
                           0, 0, 0,
                           0, 0, 0 )
matrix3_b = RLPy.RMatrix3( 1, 1, 9,
                           0, 0, 0,
                           0, 0, 0 )
print( matrix3_a<= matrix3_b ) # true

+=

The "addition assignment" operator.

See Also: +

matrix3 =  RLPy.RMatrix3( 1, 2, 3,
                          0, 0, 0,
                          0, 0, 0 )
matrix3 += RLPy.RMatrix3( 2, 2, 2,
                          0, 0, 0,
                          0, 0, 0 )

print( matrix3.GetRow(0)[0] == 1+2 ) # true
print( matrix3.GetRow(0)[1] == 2+2 ) # true
print( matrix3.GetRow(0)[2] == 3+2 ) # true

-=

The "subtraction assignment" operator.

See Also: -

matrix3 =  RLPy.RMatrix3( 1, 2, 3,
                          0, 0, 0,
                          0, 0, 0 )
matrix3 -= RLPy.RMatrix3( 2, 2, 2,
                          0, 0, 0,
                          0, 0, 0 )

print( matrix3.GetRow(0)[0] == 1-2 ) # true
print( matrix3.GetRow(0)[1] == 2-2 ) # true
print( matrix3.GetRow(0)[2] == 3-2 ) # true

*=

The "multiplication assignment" operator.

See Also: *

matrix3 =  RLPy.RMatrix3( 1, 2, 3,
                          0, 0, 0,
                          0, 0, 0 )
matrix3 *= 2

print( matrix3.GetRow(0)[0] == 1*2 ) # true
print( matrix3.GetRow(0)[1] == 2*2 ) # true
print( matrix3.GetRow(0)[2] == 3*2 ) # true

/=

The "division assignment" operator.

See Also: /

matrix3 =  RLPy.RMatrix3( 1, 2, 3,
                          0, 0, 0,
                          0, 0, 0 )
matrix3 /= 2

print( matrix3.GetRow(0)[0] == 1/2 ) # true
print( matrix3.GetRow(0)[1] == 2/2 ) # true
print( matrix3.GetRow(0)[2] == 3/2 ) # true

Member Functions

MakeIdentity ( self )

This function can be used to initialize the 3x3 matrix. It is equivalent to setting the matrix to:

[1 0 0]
[0 1 0]
[0 0 1]

Returns

This object - RMatrix3

matrix3 = RLPy.RMatrix3()
matrix3.MakeIdentity()

M ( self, args )

Get the value of an element in a 3x3 matrix by row and column index.

Parameters

nRow [IN] Index of the row in the matrix - int
nCol [IN] Index of the column in the matrix - int

Returns

The matrix element specified by row and column - float
matrix3 = RLPy.RMatrix3()
matrix3.MakeIdentity()

print(matrix3.M(0,0))  # <Swig Object of type 'float *' at 0x0000020316B015A0>

E ( self, args )

Get the value of an element in a 3x3 matrix by index number (from 0 to 8);

Parameters

nRow [IN] Index of the matrix.

Returns

The matrix element specified by index - float
matrix3 = RLPy.RMatrix3()
matrix3.MakeIdentity()

print(matrix3.E(0)) #

GetRow ( self, nRow )

Retreive a row inside a 3x3 matrix.

Parameters

nRow [IN] Index of the row in the matrix - int

Returns

The row vector of the matrix - RVector3
matrix3 = RLPy.RMatrix3()
matrix3.MakeIdentity()
row0 = matrix3.GetRow(0)

print(row0[0])
print(row0[1])
print(row0[2])

GetColumn( self, nCol )

Retreive a column inside a 3x3 matrix.

Parameters

nCol [IN] Index of the row in the matrix - int

Returns

The column vector of the matrix - RVector3
matrix3 = RLPy.RMatrix3()
matrix3.MakeIdentity()
col0 = matrix3.GetColumn(0)

print(col0[0])
print(col0[1])
print(col0[2])

Transpose( self )

Obtain the transposed matrix by transposing the current m * n matrix into an n * m matrix by row-column swapping.

Returns

A new matrix containing this matrix's transpose - RMatrix3
matrix3_orgin = RLPy.RMatrix3( 1, 2, 3,
                               4, 5, 6,
                               7, 8, 9 )
matrix3_transpose = matrix3_orgin.Transpose()
row0 = matrix3_orgin.GetRow(0)
col0 = matrix3_transpose.GetColumn(0)

print(row0[0] == col0[0])
print(row0[1] == col0[1])
print(row0[2] == col0[2])

TransposeTimes( self, mM )

Multiply a transposed version of a 3x3 matrix with itself.

Parameters

mM [IN] the matrix - RMatrix3

Returns

A new matrix. (this^T * mM) - RMatrix3
matrix3_orgin = RLPy.RMatrix3( 1, 2, 3,
                               4, 5, 6,
                               7, 8, 9 )
matrix3_transpose_value = RLPy.RMatrix3( 2, 0, 0,
                                         0, 2, 0,
                                         0, 0, 2 )
matrix3_transpose_times = matrix3_orgin.TransposeTimes(matrix3_transpose_value)
row0 = matrix3_orgin.GetRow(0)
col0 = matrix3_transpose_times.GetColumn(0)

print(row0[0]*2 == col0[0])
print(row0[1]*2 == col0[1])
print(row0[2]*2 == col0[2])

TimesTranspose( self, mM )

Multiply this 3x3 matrix with a transposed version of itself.

Parameters

mM [IN] the matrix - RMatrix3

Returns

A new matrix. (this * M^T) - RMatrix3
matrix3_orgin = RLPy.RMatrix3( 1, 2, 3,
                               4, 5, 6,
                               7, 8, 9 )
matrix3_transpose_value = RLPy.RMatrix3( 3, 0, 0,
                                         0, 3, 0,
                                         0, 0, 3 )
matrix3_times_transpose = matrix3_orgin.TimesTranspose(matrix3_transpose_value)
row0 = matrix3_orgin.GetColumn(0)
col0 = matrix3_times_transpose.GetColumn(0)

print(row0[0]*3 == col0[0])
print(row0[1]*3 == col0[1])
print(row0[2]*3 == col0[2])

Inverse( self )

Obtain the inverse (reciprocal) of this 3x3 matrix (A^-1).

Returns

A new matrix containing this matrix's inverse - RMatrix3
matrix3_value = RLPy.RMatrix3( 1, 2, 3,
                               2, 3, 4,
                               4, 2, 1 )
matrix3_inverse = matrix3_value.Inverse()
row0 = matrix3_inverse.GetRow(0)

print(row0[0])
print(row0[1])
print(row0[2])

Adjoint( self )

Adjugate this 3x3 matrix.

Returns

A new matrix containing this matrix's adjoint - RMatrix3
matrix3_value = RLPy.RMatrix3( 1, 2, 3,
                               2, 3, 4,
                               4, 2, 1 )
matrix3_Adjoint = matrix3_value.Adjoint()
row0 = matrix3_Adjoint.GetRow(0)

print(row0[0])
print(row0[1])
print(row0[2])

AdjointTranspose( self )

Adjugate and transpose this 3x3 matrix.

Returns

A new adjugated and transposed matrix - RMatrix3
matrix3_value = RLPy.RMatrix3( 1, 2, 3,
                               2, 3, 4,
                               4, 2, 1 )
matrix3_Adjoint_transpose = matrix3_value.AdjointTranspose()
col0_Adjoint_transpose = matrix3_Adjoint_transpose.GetColumn(0)

print(col0_Adjoint_transpose[0])
print(col0_Adjoint_transpose[1])
print(col0_Adjoint_transpose[2])

InverseTranspose( self )

Invert and transpose this 3x3 matrix.

Returns

A new inverted and transposed matrix - RMatrix3
matrix3_value = RLPy.RMatrix3( 1, 2, 3,
                               2, 3, 4,
                               4, 2, 1 )
matrix3_inverse_transpose = matrix3_value.InverseTranspose()
row0_inverse_transpose = matrix3_inverse_transpose.GetRow(0)

print(row0_inverse_transpose[0])
print(row0_inverse_transpose[1])
print(row0_inverse_transpose[2])

Determinant( self )

Obtain the scalar value for this 3x3 matrix (|A|).

Returns

The determinant of the matrix - float
matrix3_value = RLPy.RMatrix3( 1, 2, 3,
                               2, 3, 4,
                               4, 2, 1 )

print(matrix3_value.Determinant())

MaxColumn( self )

Find the maximum absolute value within this 3x3 matrix, and return the column in which the value is located. If all of the elements within the 3x3 matrix are 0 then return -1.

Returns

Index of column of M containing maximum abs entry, or -1 if M = 0 - int
matrix3_value = RLPy.RMatrix3( 10, 20, -30,
                                0,  0,   0,
                                0,  0,   0 )

print(matrix3_value.MaxColumn()) # column:2 ->abs(-30)

MaxRow( self )

Find the maximum absolute value within this 3x3 matrix, and return the row in which the value is located. If all of the elements within the 3x3 matrix are 0 then return -1.

Returns

Index of row of M containing maximum abs entry, or -1 if M = 0 - int
matrix3_value = RLPy.RMatrix3( 10, 0, 0,
                               20, 0, 0,
                              -30, 0, 0 )
print(matrix3_value.MaxRow()) # Row:2 ->abs(-30)

OneNorm( self )

Return the sum of the column elements that contain the largest absolute values.

Returns

Norm of this 3x3 matrix - float
matrix3_row_value = RLPy.RMatrix3( 10, 0, 0,
                                   20, 0, 0,
                                  -30, 0, 0 )
print(matrix3_row_value.OneNorm()) # 10+20+abs(-30) = 60

InfNorm( self )

Return the sum of the row elements that contain the largest absolute values.

Returns

InfNorm of this 3x3 matrix - float
matrix3_column_value = RLPy.RMatrix3( 10, 20, -30,
                                       0,  0,   0,
                                       0,  0,   0 )
print(matrix3_column_value.InfNorm()) # 10+20+abs(-30) = 60

FromAxisAngle( self, rkAxis, fAngle )

Rotation matrix from axis angle。

Parameters

rkAxis [IN] axis vector - RVector3
fAngle [IN] angle in radians - float

Returns

A new matrix from specified axis angle - RMatrix3
matrix3_orgin = RLPy.RMatrix3()
matrix3_orgin.MakeIdentity()

x_axis_vector = RLPy.RVector3( 1, 0, 0 )  # axis = "X"
y_axis_vector = RLPy.RVector3( 0, 1, 0 )  # axis = "Y"
z_axis_vector = RLPy.RVector3( 0, 0, 1 )  # axis = "Z"    

matrix3_orgin.FromAxisAngle( x_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
matrix3_orgin.FromAxisAngle( y_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
matrix3_orgin.FromAxisAngle( z_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )

RotationX( self, fAngle )

Rotate this 3x3 matrix around the x-axis.

Parameters

fAngle [IN] angle in radians - float

Returns

The rotated 3x3 matrix around the x-axis - RMatrix3
matrix3_orgin = RLPy.RMatrix3()
matrix3_orgin.MakeIdentity()
matrix3_orgin.RotationX( 90 * RLPy.RMath.CONST_DEG_TO_RAD )

RotationY( self, fAngle )

Rotate this 3x3 matrix around the y-axis。

Parameters

fAngle [IN] angle in radians - float

Returns

The rotated 3x3 matrix around the y-axis - RMatrix3
matrix3_orgin = RLPy.RMatrix3()
matrix3_orgin.MakeIdentity()
matrix3_orgin.RotationY( 90 * RLPy.RMath.CONST_DEG_TO_RAD )

RotationZ( self, fAngle )

Rotation this 3x3 matrix around the z-axis.

Parameters

fAngle [IN] angle in radians - float

Returns

A new 3x3 matrix of for rotations around z-axis - RMatrix3
matrix3_orgin = RLPy.RMatrix3()
matrix3_orgin.MakeIdentity()
matrix3_orgin.RotationZ( 90 * RLPy.RMath.CONST_DEG_TO_RAD )

AccuScale( self, rkScale )

Accumulate 3x3 matrix with scale vector.

Parameters

rkScale [IN] Scale vector - RVector3

Returns

A newly scaled matrix - RMatrix3
matrix3_orgin = RLPy.RMatrix3()
matrix3_orgin.MakeIdentity()
scale_vector = RLPy.RVector3( 2, 2, 2 )
matrix3_orgin.AccuScale(scale_vector)

ToEulerAngle( self, rkScaleself, Order, rx, ry, rz )

Convert 3x3 matrix to Euler angles.

Parameters

Order [IN] Euler order - RLPy.Rotation_Order
rx [OUT] Angle of x-axis in radians - float
ry [OUT] Angle of y-axis in radians - float
rz [OUT] Angle of z-axis in radians - float
matrix3_value = RLPy.RMatrix3( -0, -0,  1,
                                0, -1, -0,
                                1,  0, -0 )
euler_angle_x = 0
euler_angle_y = 0
euler_angle_z = 0
result = matrix3_value.ToEulerAngle( RLPy.EEulerOrder_XYZ, euler_angle_x, euler_angle_y, euler_angle_z )

print(result[0] * RLPy.RMath.CONST_RAD_TO_DEG) # 180
print(result[1] * RLPy.RMath.CONST_RAD_TO_DEG) # 90
print(result[2] * RLPy.RMath.CONST_RAD_TO_DEG) # 0

FromEulerAngle( self, Order, rx, ry, rz )

Convert Euler angle to a 3x3 matrix according to a rotation axis order.

Parameters

Order [IN] Euler order - RLPy.Rotation_Order
rx [IN] Angle of x-axis in radians - float
ry [IN] Angle of y-axis in radians - float
rz [IN] Angle of z-axis in radians - float

Returns

A new matrix from specified axis angle - RMatrix3
matrix3_orgin = RLPy.RMatrix3()
euler_angle_x = 90 * RLPy.RMath.CONST_DEG_TO_RAD
euler_angle_y = 0
euler_angle_z = 0
matrix3_result = matrix3_orgin.FromEulerAngle( RLPy.EEulerOrder_XYZ, euler_angle_x, euler_angle_y, euler_angle_z)
row0 = matrix3_result[0].GetRow(0)

print(row0[0])
print(row0[1])
print(row0[2])

FromSphereUnitVec( self, rkVec )

Convert Euler angle to matrix.

Parameters

rkVec [IN] vector - RVector3

Returns

A new 3x3 matrix from sphere unit vector - RMatrix3
vector = RLPy.RVector3( 0, 1, 0 )
matrix3_result =  RLPy.RMatrix3().FromSphereUnitVec( vector )
row0 = matrix3_result.GetRow(0)

print(row0[0])
print(row0[1])
print(row0[2])

IsRightHandCoordinate( self )

Obtain this 3x3 matrix's coordinate system. True stands for right-handed coordinate system while False for left-handed.

Returns

True Right hand coordinate - bool
False Left hand coordinate - bool
matrix3_value = RLPy.RMatrix3( 1, 0, 0,
                               0, 1, 0,
                               0, 0, 1 )
result = matrix3_value.IsRightHandCoordinate()

print(result)