Difference between revisions of "IC Python API:RLPy RMatrix4"

From Reallusion Wiki!
Jump to: navigation, search
m
m
Line 5: Line 5:
 
== Description ==
 
== Description ==
  
This class represent a standard 3x3 matrix. This class provides access to RLPy's internal 3x3 matrix operators and related functions. iClone uses row-major order where consecutive elements of a row reside next to each other, and the data is read from left to right, top to bottom, in a vertical zig-zag:
+
This class represent the transform data of RTransform. This class provides access to RLPy's internal 4x4 matrix operators and related functions.
 
+
[0, 1, 2]
+
[3, 4, 5]
+
[6, 7, 8]
+
  
 
== Operators ==
 
== Operators ==
Line 20: Line 16:
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_a = RLPy.RMatrix3( 1, 2, 3,
+
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
                           0, 0, 0,
+
                           0, 0, 0, 0,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
matrix3_b = RLPy.RMatrix3( 2, 2, 2,
+
                          0, 0, 0, 0 )
                           0, 0, 0,
+
matrix4_b = RLPy.RMatrix4( 2, 2, 2, 2,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
matrix3_result = matrix3_a + matrix3_b
+
                           0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
matrix4_result = matrix4_a + matrix4_b
  
print( matrix3_result.GetRow(0)[0] == 1+2 ) # true
+
print( matrix4_result.GetRow(0)[0] == 1+2 ) # true
print( matrix3_result.GetRow(0)[1] == 2+2 ) # true
+
print( matrix4_result.GetRow(0)[1] == 2+2 ) # true
print( matrix3_result.GetRow(0)[2] == 3+2 ) # true
+
print( matrix4_result.GetRow(0)[2] == 3+2 ) # true
 +
print( matrix4_result.GetRow(0)[3] == 4+2 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
Line 40: Line 39:
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_a = RLPy.RMatrix3( 1, 2, 3,
+
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
                           0, 0, 0,
+
                           0, 0, 0, 0,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
matrix3_b = RLPy.RMatrix3( 2, 2, 2,
+
                          0, 0, 0, 0 )
                           0, 0, 0,
+
matrix4_b = RLPy.RMatrix4( 2, 2, 2, 2,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
matrix3_result = matrix3_a - matrix3_b
+
                           0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
matrix4_result = matrix4_a - matrix4_b
  
print( matrix3_result.GetRow(0)[0] == 1-2 ) # true
+
print( matrix4_result.GetRow(0)[0] == 1-2 ) # true
print( matrix3_result.GetRow(0)[1] == 2-2 ) # true
+
print( matrix4_result.GetRow(0)[1] == 2-2 ) # true
print( matrix3_result.GetRow(0)[2] == 3-2 ) # true
+
print( matrix4_result.GetRow(0)[2] == 3-2 ) # true
 +
print( matrix4_result.GetRow(0)[3] == 4-2 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
 
=== * ===
 
=== * ===
  
The "multiplication" operator.
+
The "multiplication" operator.  
  
 
See Also: [[#*=|*=]]
 
See Also: [[#*=|*=]]
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_a = RLPy.RMatrix3( 1, 2, 3,
+
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
                           0, 0, 0,
+
                           0, 0, 0, 0,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
matrix3_b = RLPy.RMatrix3( 2, 0, 0,
+
                          0, 0, 0, 0 )
                           2, 0, 0,
+
matrix4_b = RLPy.RMatrix4( 2, 0, 0, 0,
                           2, 0, 0 )
+
                           2, 0, 0, 0,
matrix3_result = matrix3_a * matrix3_b
+
                           2, 0, 0, 0,
print( matrix3_result.GetRow(0)[0] == 1*2 + 2*2 + 3*2 ) # true
+
                          2, 0, 0, 0 )
 +
matrix4_result = matrix4_a * matrix4_b
 +
 
 +
print( matrix4_result.GetRow(0)[0] == 1*2 + 2*2 + 3*2 + 4*2  ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
 
=== / ===
 
=== / ===
  
The "division" operator.  
+
The "division" operator.
  
 
See Also: [[#/=|/=]]
 
See Also: [[#/=|/=]]
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_a = RLPy.RMatrix3( 1, 2, 3,
+
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
                           0, 0, 0,
+
                           0, 0, 0, 0,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
matrix3_result = matrix3_a / 2
+
                          0, 0, 0, 0 )
 +
matrix4_result = matrix4_a / 2
  
print( matrix3_result.GetRow(0)[0] == 1/2 ) # true
+
print( matrix4_result.GetRow(0)[0] == 1/2 ) # true
print( matrix3_result.GetRow(0)[1] == 2/2 ) # true
+
print( matrix4_result.GetRow(0)[1] == 2/2 ) # true
print( matrix3_result.GetRow(0)[2] == 3/2 ) # true
+
print( matrix4_result.GetRow(0)[2] == 3/2 ) # true
 +
print( matrix4_result.GetRow(0)[3] == 4/2 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
 
=== - ===
 
=== - ===
  
The "unary minus" operator.
+
The "unary minus" .
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_a = RLPy.RMatrix3( 1, 2, 3,
+
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
                           0, 0, 0,
+
                           0, 0, 0, 0,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
matrix3_result = -matrix3_a
+
                          0, 0, 0, 0 )
 +
matrix4_result = -matrix4_a
  
print( matrix3_result.GetRow(0)[0] == -1 ) # true
+
print( matrix4_result.GetRow(0)[0] == -1 ) # true
print( matrix3_result.GetRow(0)[1] == -2 ) # true
+
print( matrix4_result.GetRow(0)[1] == -2 ) # true
print( matrix3_result.GetRow(0)[2] == -3 ) # true
+
print( matrix4_result.GetRow(0)[2] == -3 ) # true
 +
print( matrix4_result.GetRow(0)[3] == -4 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
Line 109: Line 118:
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_a = RLPy.RMatrix3( 1, 2, 3,
+
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
                           0, 0, 0,
+
                           0, 0, 0, 0,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
matrix3_b = RLPy.RMatrix3( 1, 2, 3,
+
                          0, 0, 0, 0 )
                           0, 0, 0,
+
matrix4_b = RLPy.RMatrix4( 1, 2, 3, 4,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
print( matrix3_a == matrix3_b ) # true
+
                           0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
 
 +
print( matrix4_a == matrix4_b ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
Line 125: Line 137:
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_a = RLPy.RMatrix3( 1, 2, 3,
+
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
                           0, 0, 0,
+
                           0, 0, 0, 0,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
matrix3_b = RLPy.RMatrix3( 4, 5, 6,
+
                          0, 0, 0, 0 )
                           0, 0, 0,
+
matrix4_b = RLPy.RMatrix4( 2, 2, 2, 2,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
print( matrix3_a != matrix3_b ) # true
+
                           0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
 
 +
print( matrix4_a != matrix4_b ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
 
=== > ===
 
=== > ===
  
The "greater than" operator. Performs a one-by-one comparison of the matrix array.
+
The "greater than" operator. Performs a one-by-one comparison of the matrix array.
  
 
See Also: [[#>=|>=]]
 
See Also: [[#>=|>=]]
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_a = RLPy.RMatrix3( 2, 0, 0,
+
matrix4_a = RLPy.RMatrix4( 1, 0, 0, 0,
                           0, 0, 0,
+
                           0, 0, 0, 0,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
matrix3_b = RLPy.RMatrix3( 5, 0, 0,
+
                          0, 0, 0, 0 )
                           0, 0, 0,
+
matrix4_b = RLPy.RMatrix4( 2, 0, 0, 0,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
print( matrix3_b >matrix3_a ) # true
+
                           0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
 
 +
print( matrix4_b > matrix4_a ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
Line 157: Line 175:
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_a = RLPy.RMatrix3( 1, 1, 3,
+
matrix4_a = RLPy.RMatrix4( 1, 1, 1, 4,
                           0, 0, 0,
+
                           0, 0, 0, 0,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
matrix3_b = RLPy.RMatrix3( 1, 1, 9,
+
                          0, 0, 0, 0 )
                           0, 0, 0,
+
matrix4_b = RLPy.RMatrix4( 1, 1, 1, 8,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
print( matrix3_b >= matrix3_a ) # true
+
                           0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
 
 +
print( matrix4_b >= matrix4_a ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
Line 173: Line 194:
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_a = RLPy.RMatrix3( 2, 0, 0,
+
matrix4_a = RLPy.RMatrix4( 2, 0, 0, 0,
                           0, 0, 0,
+
                           0, 0, 0, 0,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
matrix3_b = RLPy.RMatrix3( 5, 0, 0,
+
                          0, 0, 0, 0 )
                           0, 0, 0,
+
matrix4_b = RLPy.RMatrix4( 3, 0, 0, 0,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
print( matrix3_a< matrix3_b ) # true
+
                           0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
 
 +
print( matrix4_a < matrix4_b ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
Line 189: Line 213:
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_a = RLPy.RMatrix3( 1, 1, 3,
+
matrix4_a = RLPy.RMatrix4( 2, 2, 1, 0,
                           0, 0, 0,
+
                           0, 0, 0, 0,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
matrix3_b = RLPy.RMatrix3( 1, 1, 9,
+
                          0, 0, 0, 0 )
                           0, 0, 0,
+
matrix4_b = RLPy.RMatrix4( 2, 2, 5, 0,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
print( matrix3_a<= matrix3_b ) # true
+
                           0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
 
 +
print( matrix4_a <= matrix4_b ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
Line 205: Line 232:
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3 =  RLPy.RMatrix3( 1, 2, 3,
+
matrix4 =  RLPy.RMatrix4( 1, 2, 3, 4,
                           0, 0, 0,
+
                           0, 0, 0, 0,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
matrix3 += RLPy.RMatrix3( 2, 2, 2,
+
                          0, 0, 0, 0 )
                           0, 0, 0,
+
matrix4 += RLPy.RMatrix4( 2, 2, 2, 2,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
 +
                           0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
  
print( matrix3.GetRow(0)[0] == 1+2 ) # true
+
print( matrix4.GetRow(0)[0] == 1+2 ) # true
print( matrix3.GetRow(0)[1] == 2+2 ) # true
+
print( matrix4.GetRow(0)[1] == 2+2 ) # true
print( matrix3.GetRow(0)[2] == 3+2 ) # true
+
print( matrix4.GetRow(0)[2] == 3+2 ) # true
 +
print( matrix4.GetRow(0)[3] == 4+2 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
Line 224: Line 254:
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3 =  RLPy.RMatrix3( 1, 2, 3,
+
matrix4 =  RLPy.RMatrix4( 1, 2, 3, 4,
                           0, 0, 0,
+
                           0, 0, 0, 0,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
matrix3 -= RLPy.RMatrix3( 2, 2, 2,
+
                          0, 0, 0, 0 )
                           0, 0, 0,
+
matrix4 -= RLPy.RMatrix4( 2, 2, 2, 2,
                           0, 0, 0 )
+
                           0, 0, 0, 0,
 +
                           0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
  
print( matrix3.GetRow(0)[0] == 1-2 ) # true
+
print( matrix4.GetRow(0)[0] == 1-2 ) # true
print( matrix3.GetRow(0)[1] == 2-2 ) # true
+
print( matrix4.GetRow(0)[1] == 2-2 ) # true
print( matrix3.GetRow(0)[2] == 3-2 ) # true
+
print( matrix4.GetRow(0)[2] == 3-2 ) # true
 +
print( matrix4.GetRow(0)[3] == 4-2 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
 
=== *= ===
 
=== *= ===
  
The "multiplication assignment" operator.
+
The "multiplication assignment" operator. For the calculation method, refer to the '''*''' operator.
  
 
See Also: [[#*|*]]
 
See Also: [[#*|*]]
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3 = RLPy.RMatrix3( 1, 2, 3,
+
matrix4 = RLPy.RMatrix4( 1, 2, 3, 4,
                          0, 0, 0,
+
                        0, 0, 0, 0,
                          0, 0, 0 )
+
                        0, 0, 0, 0,
matrix3 *= 2
+
                        0, 0, 0, 0 )
 +
matrix4 *= 2
  
print( matrix3.GetRow(0)[0] == 1*2 ) # true
+
print( matrix4.GetRow(0)[0] == 1*2 ) # true
print( matrix3.GetRow(0)[1] == 2*2 ) # true
+
print( matrix4.GetRow(0)[1] == 2*2 ) # true
print( matrix3.GetRow(0)[2] == 3*2 ) # true
+
print( matrix4.GetRow(0)[2] == 3*2 ) # true
 +
print( matrix4.GetRow(0)[3] == 4*2 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
 
=== /= ===
 
=== /= ===
  
The "division assignment" operator.
+
The "division assignment" operator. For the calculation method, refer to the '''/''' operator.
  
 
See Also: [[#/|/]]
 
See Also: [[#/|/]]
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3 = RLPy.RMatrix3( 1, 2, 3,
+
matrix4 = RLPy.RMatrix4( 1, 2, 3, 4,
                          0, 0, 0,
+
                        0, 0, 0, 0,
                          0, 0, 0 )
+
                        0, 0, 0, 0,
matrix3 /= 2
+
                        0, 0, 0, 0 )
 +
matrix4 /= 2
  
print( matrix3.GetRow(0)[0] == 1/2 ) # true
+
print( matrix4.GetRow(0)[0] == 1/2 ) # true
print( matrix3.GetRow(0)[1] == 2/2 ) # true
+
print( matrix4.GetRow(0)[1] == 2/2 ) # true
print( matrix3.GetRow(0)[2] == 3/2 ) # true
+
print( matrix4.GetRow(0)[2] == 3/2 ) # true
 +
print( matrix4.GetRow(0)[3] == 4/2 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
  
 
== Member Functions ==
 
== Member Functions ==
  
=== MakeIdentity ( self ) ===
+
=== MakeIdentity (self) ===
  
 
This function can be used to initialize the 3x3 matrix.  It is equivalent to setting the matrix to:
 
This function can be used to initialize the 3x3 matrix.  It is equivalent to setting the matrix to:
  
[1 0 0]
+
:[1 0 0]
[0 1 0]
+
:[0 1 0]
  [0 0 1]
+
:[0 0  1  0]
 +
:[0 0 1]
  
 
==== Returns ====
 
==== Returns ====
 
+
:This object - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
This object - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
+
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3 = RLPy.RMatrix3()
+
matrix4 = RLPy.RMatrix4()
matrix3.MakeIdentity()
+
matrix4.MakeIdentity()
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== M ( self, args ) ===
+
=== M (self, args) ===
  
Get the value of an element in a 3x3 matrix by row and column index.
+
Get the value of an element in a 4x4 matrix by row and column index.
  
 
==== Parameters ====
 
==== Parameters ====
:'''nRow''' [IN] Index of the row in the matrix - int
+
:'''nRow'''[IN] Index of the row in the matrix - int'''nCol'''[IN] Index of the column in the matrix - int
:'''nCol''' [IN] Index of the column in the matrix - int
+
  
 
==== Returns ====
 
==== Returns ====
:The matrix element specified by row and column - float
+
:The matrix element specified by row and col - float
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3 = RLPy.RMatrix3()
+
matrix4 = RLPy.RMatrix4()
matrix3.MakeIdentity()
+
matrix4.MakeIdentity()
  
print(matrix3.M(0,0)) # <Swig Object of type 'float *' at 0x0000020316B015A0>
+
print(matrix4.M(0,0)) #  
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== E ( self, args ) ===
+
=== E (self, args) ===
  
Get the value of an element in a 3x3 matrix by index number (from 0 to 8);
+
Get the value of an element in a 3x3 matrix by index number (from 0 to 15);
  
 
==== Parameters ====
 
==== Parameters ====
:'''nRow''' [IN] Index of the matrix.
+
:'''nRow'''[IN] Index of the matrix.
  
 
==== Returns ====
 
==== Returns ====
Line 318: Line 354:
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3 = RLPy.RMatrix3()
+
matrix4 = RLPy.RMatrix4()
matrix3.MakeIdentity()
+
matrix4.MakeIdentity()
  
print(matrix3.E(0)) #
+
print(matrix4.E(0)) #  
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== GetRow ( self, nRow ) ===
+
=== GetRow (self, nR) ===
  
Retreive a row inside a 3x3 matrix.
+
Retreive a row inside a 4x4 matrix.
  
 
==== Parameters ====
 
==== Parameters ====
:'''nRow''' [IN] Index of the row in the matrix - int
+
:'''nRow'''[IN] Index of the row in the matrix.
  
 
==== Returns ====
 
==== Returns ====
:The row vector of the matrix - [[IC_Python_API:RLPy_RVector3|RVector3]]
+
:The row vector of the matrix - [[IC_Python_API:RLPy_RVector4|RVector4]]
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3 = RLPy.RMatrix3()
+
matrix4 = RLPy.RMatrix4()
matrix3.MakeIdentity()
+
matrix4.MakeIdentity()
row0 = matrix3.GetRow(0)
+
row0 = matrix4.GetRow(0)
  
 
print(row0[0])
 
print(row0[0])
 
print(row0[1])
 
print(row0[1])
 
print(row0[2])
 
print(row0[2])
 +
print(row0[3])
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== GetColumn( self, nCol ) ===
+
=== GetColumn (self, nC) ===
  
Retreive a column inside a 3x3 matrix.
+
Retrieve a column inside a 4x4 matrix.
  
 
==== Parameters ====
 
==== Parameters ====
:'''nCol''' [IN] Index of the row in the matrix - int
+
:'''nRow'''[IN] Index of the column in the matrix.
  
 
==== Returns ====
 
==== Returns ====
:The column vector of the matrix - [[IC_Python_API:RLPy_RVector3|RVector3]]
+
:The column vector of the matrix - [[IC_Python_API:RLPy_RVector4|RVector4]]
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3 = RLPy.RMatrix3()
+
matrix4 = RLPy.RMatrix4()
matrix3.MakeIdentity()
+
matrix4.MakeIdentity()
col0 = matrix3.GetColumn(0)
+
col0 = matrix4.GetColumn(0)
  
 
print(col0[0])
 
print(col0[0])
 
print(col0[1])
 
print(col0[1])
 
print(col0[2])
 
print(col0[2])
 +
print(col0[3])
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== Transpose( self ) ===
+
=== Transpose (self) ===
  
 
Obtain the transposed matrix by transposing the current m * n matrix into an n * m matrix by row-column swapping.
 
Obtain the transposed matrix by transposing the current m * n matrix into an n * m matrix by row-column swapping.
  
 
==== Returns ====
 
==== Returns ====
:A new matrix containing this matrix's transpose - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
+
:A new matrix containing this matrix's transpose - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_orgin = RLPy.RMatrix3( 1, 2, 3,
+
matrix4_orgin = RLPy.RMatrix4( 1, 2, 3, 4,
                              4, 5, 6,
+
                                5, 6, 7, 8,
                              7, 8, 9 )
+
                                9, 10, 11, 12,
matrix3_transpose = matrix3_orgin.Transpose()
+
                              13, 14, 15, 16 )
row0 = matrix3_orgin.GetRow(0)
+
matrix4_transpose = matrix4_orgin.Transpose()
col0 = matrix3_transpose.GetColumn(0)
+
row0 = matrix4_orgin.GetRow(0)
 +
col0 = matrix4_transpose.GetColumn(0)
  
 
print(row0[0] == col0[0])
 
print(row0[0] == col0[0])
 
print(row0[1] == col0[1])
 
print(row0[1] == col0[1])
 
print(row0[2] == col0[2])
 
print(row0[2] == col0[2])
 +
print(row0[3] == col0[3])
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== TransposeTimes( self, mM ) ===
+
=== TransposeTimes (self, mM) ===
  
Multiply a transposed version of a 3x3 matrix with itself.
+
Multiply a transposed version of a 4x4 matrix with itself.
  
 
==== Parameters ====
 
==== Parameters ====
:'''mM''' [IN] the matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
+
:'''mM'''[IN] the matrix - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
  
 
==== Returns ====
 
==== Returns ====
:A new matrix. (this^T * mM) - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
+
:A new matrix. (this^T * mM) - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_orgin = RLPy.RMatrix3( 1, 2, 3,
+
matrix4_orgin = RLPy.RMatrix4( 1, 2, 3, 4,
                              4, 5, 6,
+
                                5, 6, 7, 8,
                              7, 8, 9 )
+
                                9, 10, 11, 12,
matrix3_transpose_value = RLPy.RMatrix3( 2, 0, 0,
+
                              13, 14, 15, 16 )
                                         0, 2, 0,
+
matrix4_transpose_value = RLPy.RMatrix4( 2, 0, 0, 0,
                                         0, 0, 2 )
+
                                         0, 2, 0, 0,
matrix3_transpose_times = matrix3_orgin.TransposeTimes(matrix3_transpose_value)
+
                                         0, 0, 2, 0,
row0 = matrix3_orgin.GetRow(0)
+
                                        0, 0, 0, 2 )
col0 = matrix3_transpose_times.GetColumn(0)
+
matrix4_transpose_times = matrix4_orgin.TransposeTimes(matrix4_transpose_value)
 +
row0 = matrix4_orgin.GetRow(0)
 +
col0 = matrix4_transpose_times.GetColumn(0)
  
 
print(row0[0]*2 == col0[0])
 
print(row0[0]*2 == col0[0])
 
print(row0[1]*2 == col0[1])
 
print(row0[1]*2 == col0[1])
 
print(row0[2]*2 == col0[2])
 
print(row0[2]*2 == col0[2])
 +
print(row0[3]*2 == col0[3])
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== TimesTranspose( self, mM ) ===
+
=== TimesTranspose (self, mM) ===
  
Multiply this 3x3 matrix with a transposed version of itself.
+
Multiply this 4x4 matrix with a transposed version of itself.
  
 
==== Parameters ====
 
==== Parameters ====
:'''mM''' [IN] the matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
+
:'''mM'''[IN] the matrix - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
  
 
==== Returns ====
 
==== Returns ====
:A new matrix. (this * M^T) - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
+
:A new matrix. (this * M^T) - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_orgin = RLPy.RMatrix3( 1, 2, 3,
+
matrix4_orgin = RLPy.RMatrix4( 1, 2, 3, 4,
                              4, 5, 6,
+
                                5, 6, 7, 8,
                              7, 8, 9 )
+
                                9, 10, 11, 12,
matrix3_transpose_value = RLPy.RMatrix3( 3, 0, 0,
+
                              13, 14, 15, 16 )
                                         0, 3, 0,
+
matrix4_transpose_value = RLPy.RMatrix4( 3, 0, 0, 0,
                                         0, 0, 3 )
+
                                         0, 3, 0, 0,
matrix3_times_transpose = matrix3_orgin.TimesTranspose(matrix3_transpose_value)
+
                                         0, 0, 3, 0,
row0 = matrix3_orgin.GetColumn(0)
+
                                        0, 0, 0, 3 )
col0 = matrix3_times_transpose.GetColumn(0)
+
matrix4_times_transpose = matrix4_orgin.TimesTranspose(matrix4_transpose_value)
 +
row0 = matrix4_orgin.GetColumn(0)
 +
col0 = matrix4_times_transpose.GetColumn(0)
  
 
print(row0[0]*3 == col0[0])
 
print(row0[0]*3 == col0[0])
 
print(row0[1]*3 == col0[1])
 
print(row0[1]*3 == col0[1])
 
print(row0[2]*3 == col0[2])
 
print(row0[2]*3 == col0[2])
 +
print(row0[3]*3 == col0[3])
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== Inverse( self ) ===
+
=== Inverse (self) ===
  
Obtain the inverse (reciprocal) of this 3x3 matrix (A^-1).
+
Obtain the inverse (reciprocal) of this 4x4 matrix (A^-1).
  
 
==== Returns ====
 
==== Returns ====
:A new matrix containing this matrix's inverse - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
+
:A new matrix containing this matrix's inverse - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_value = RLPy.RMatrix3( 1, 2, 3,
+
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
                               2, 3, 4,
+
                               1, 1,-1,-2,
                               4, 2, 1 )
+
                              1,-1,-1, 2,
matrix3_inverse = matrix3_value.Inverse()
+
                               1,-2, 1,-1 )
row0 = matrix3_inverse.GetRow(0)
+
matrix4_inverse = matrix4_value.Inverse()
 +
row0_inverse = matrix4_inverse.GetRow(0)
  
print(row0[0])
+
print(row0_inverse[0])
print(row0[1])
+
print(row0_inverse[1])
print(row0[2])
+
print(row0_inverse[2])
 +
print(row0_inverse[3])
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== Adjoint( self ) ===
+
=== Adjoint (self) ===
  
Adjugate this 3x3 matrix.
+
Adjugate this 4x4 matrix.
  
 
==== Returns ====
 
==== Returns ====
:A new matrix containing this matrix's adjoint - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
+
:A new matrix containing this matrix's adjoint - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_value = RLPy.RMatrix3( 1, 2, 3,
+
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
                               2, 3, 4,
+
                               1, 1,-1,-2,
                               4, 2, 1 )
+
                              1,-1,-1, 2,
matrix3_Adjoint = matrix3_value.Adjoint()
+
                               1,-2, 1,-1 )
row0 = matrix3_Adjoint.GetRow(0)
+
matrix4_Adjoint = matrix4_value.Adjoint()
 +
row0_Adjoint = matrix4_Adjoint.GetRow(0)
  
print(row0[0])
+
print(row0_Adjoint[0])
print(row0[1])
+
print(row0_Adjoint[1])
print(row0[2])
+
print(row0_Adjoint[2])
 +
print(row0_Adjoint[3])
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== AdjointTranspose( self ) ===
+
=== AdjointTranspose (self) ===
  
Adjugate and transpose this 3x3 matrix.
+
Adjugate and transpose this 4x4 matrix.
  
 
==== Returns ====
 
==== Returns ====
:A new adjugated and transposed matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
+
:A new matrix - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_value = RLPy.RMatrix3( 1, 2, 3,
+
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
                               2, 3, 4,
+
                               1, 1,-1,-2,
                               4, 2, 1 )
+
                              1,-1,-1, 2,
matrix3_Adjoint_transpose = matrix3_value.AdjointTranspose()
+
                               1,-2, 1,-1 )
col0_Adjoint_transpose = matrix3_Adjoint_transpose.GetColumn(0)
+
matrix4_Adjoint_transpose = matrix4_value.AdjointTranspose()
 +
col0_Adjoint_transpose = matrix4_Adjoint_transpose.GetColumn(0)
  
print(col0_Adjoint_transpose[0])
+
print(col0_Adjoint_transpose[0] == row0_Adjoint[0])
print(col0_Adjoint_transpose[1])
+
print(col0_Adjoint_transpose[1] == row0_Adjoint[1])
print(col0_Adjoint_transpose[2])
+
print(col0_Adjoint_transpose[2] == row0_Adjoint[2])
 +
print(col0_Adjoint_transpose[3] == row0_Adjoint[3])
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== InverseTranspose( self ) ===
+
=== InverseTranspose (self) ===
  
Invert and transpose this 3x3 matrix.
+
Invert and transpose this 4x4 matrix.
  
 
==== Returns ====
 
==== Returns ====
:A new inverted and transposed matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
+
:A new matrix - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_value = RLPy.RMatrix3( 1, 2, 3,
+
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
                               2, 3, 4,
+
                               1, 1,-1,-2,
                               4, 2, 1 )
+
                              1,-1,-1, 2,
matrix3_inverse_transpose = matrix3_value.InverseTranspose()
+
                               1,-2, 1,-1 )
row0_inverse_transpose = matrix3_inverse_transpose.GetRow(0)
+
matrix4_inverse_transpose = matrix4_value.InverseTranspose()
 +
col0_inverse_transpose = matrix4_inverse_transpose.GetColumn(0)
  
print(row0_inverse_transpose[0])
+
print(col0_inverse_transpose[0] == row0_inverse[0])
print(row0_inverse_transpose[1])
+
print(col0_inverse_transpose[1] == row0_inverse[1])
print(row0_inverse_transpose[2])
+
print(col0_inverse_transpose[2] == row0_inverse[2])
 +
print(col0_inverse_transpose[3] == row0_inverse[3])
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== Determinant( self ) ===
+
=== Determinant (self) ===
  
Obtain the scalar value for this 3x3 matrix (|A|).
+
Obtain the scalar value for this 4x4 matrix (|A|).
  
 
==== Returns ====
 
==== Returns ====
Line 520: Line 574:
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_value = RLPy.RMatrix3( 1, 2, 3,
+
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
                               2, 3, 4,
+
                               1, 1,-1,-2,
                               4, 2, 1 )
+
                              1,-1,-1, 2,
 
+
                               1,-2, 1,-1 )
print(matrix3_value.Determinant())
+
print(matrix4_value.Determinant())
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== MaxColumn( self ) ===
+
=== MaxColumn (self) ===
  
Find the maximum absolute value within this 3x3 matrix, and return the column in which the value is located.  If all of the elements within the 3x3 matrix are 0 then return -1.
+
Find the maximum absolute value within this 4x4 matrix, and return the column in which the value is located.  If all of the elements within the 4x4 matrix are 0 then return -1.
  
 
==== Returns ====
 
==== Returns ====
:Index of column of M containing maximum abs entry, or -1 if M = 0 - int
+
:Return index of column of M containing maximum abs entry, or -1 if M = 0 - int
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_value = RLPy.RMatrix3( 10, 20, -30,
+
matrix4_column_value = RLPy.RMatrix4( 1, 2, 3,-5,
                                0, 0,   0,
+
                                      0, 0, 0, 0,
                                0, 0,   0 )
+
                                      0, 0, 0, 0,
 
+
                                      0, 0, 0, 0 )
print(matrix3_value.MaxColumn()) # column:2 ->abs(-30)
+
print(matrix4_column_value.MaxColumn()) # column:3 -> abs(-5)
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== MaxRow( self ) ===
+
=== MaxRow (self) ===
  
Find the maximum absolute value within this 3x3 matrix, and return the row in which the value is located.  If all of the elements within the 3x3 matrix are 0 then return -1.
+
Find the maximum absolute value within this 4x4 matrix, and return the row in which the value is located.  If all of the elements within the 4x4 matrix are 0 then return -1.
  
 
==== Returns ====
 
==== Returns ====
:Index of row of M containing maximum abs entry, or -1 if M = 0 - int
+
:Return index of row of M containing maximum abs entry, or -1 if M = 0 - int
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_value = RLPy.RMatrix3( 10, 0, 0,
+
matrix4_row_value = RLPy.RMatrix4( 1, 0, 0, 0,
                              20, 0, 0,
+
                                  2, 0, 0, 0,
                              -30, 0, 0 )
+
                                  3, 0, 0, 0,
print(matrix3_value.MaxRow()) # Row:2 ->abs(-30)
+
                                  -5, 0, 0, 0 )
 +
print(matrix4_value.MaxRow()) # Row:3 -> abs(-5)
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== OneNorm( self ) ===
+
=== OneNorm (self) ===
  
 
Return the sum of the column elements that contain the largest absolute values.
 
Return the sum of the column elements that contain the largest absolute values.
  
 
==== Returns ====
 
==== Returns ====
:Norm of this 3x3 matrix - float
+
:Return Norm - float
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_row_value = RLPy.RMatrix3( 10, 0, 0,
+
matrix4_row_value = RLPy.RMatrix4( 1, 0, 0, 0,
                                   20, 0, 0,
+
                                   2, 0, 0, 0,
                                   -30, 0, 0 )
+
                                  3, 0, 0, 0,
print(matrix3_row_value.OneNorm()) # 10+20+abs(-30) = 60
+
                                   -5, 0, 0, 0 )
 +
print(matrix4_row_value.OneNorm()) # 11 -> 1+2+abs(-5)
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== InfNorm( self ) ===
+
=== InfNorm (self) ===
  
 
Return the sum of the row elements that contain the largest absolute values.
 
Return the sum of the row elements that contain the largest absolute values.
  
 
==== Returns ====
 
==== Returns ====
:InfNorm of this 3x3 matrix - float
+
:Return InfNorm - float
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_column_value = RLPy.RMatrix3( 10, 20, -30,
+
matrix4_column_value = RLPy.RMatrix4( 1, 2, 3,-5,
                                      0, 0,   0,
+
                                      0, 0, 0, 0,
                                      0, 0,   0 )
+
                                      0, 0, 0, 0,
print(matrix3_column_value.InfNorm()) # 10+20+abs(-30) = 60
+
                                      0, 0, 0, 0 )
 +
print(matrix4_column_value.InfNorm()) # 11 -> 1+2+abs(-5)
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== FromAxisAngle( self, rkAxis, fAngle ) ===
+
=== FromRTS (self, kRotate, kTranslate, kScale) ===
  
Rotation matrix from axis angle。
+
Apply rotate, translate, and scale data to a 4x4 matrix.
  
 
==== Parameters ====
 
==== Parameters ====
:'''rkAxis''' [IN] axis vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
+
:'''kRotate  '''[IN] Rotate Matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
:'''fAngle''' [IN] angle in radians - float
+
:'''kTranslate'''[IN] Translate vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
 +
:'''kScale  '''[IN] Scale vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
  
 
==== Returns ====
 
==== Returns ====
:A new matrix from specified axis angle - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
+
:Return a new matrix from RTS - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_orgin = RLPy.RMatrix3()
+
rotate = RLPy.RMatrix3( 1, 0, 0,
matrix3_orgin.MakeIdentity()
+
                        0, 1, 0,
 +
                        0, 0, 1 )
 +
translate = RLPy.RVector3( 1, 0, 0 )
 +
scale = RLPy.RVector3( 2, 2, 2 )
 +
matrix4_result =  RLPy.RMatrix4().FromRTS( rotate, translate, scale )
 +
row0 = matrix4_result.GetRow(0)
  
x_axis_vector = RLPy.RVector3( 1, 0, 0 ) # axis = "X"
+
print(row0[0])
y_axis_vector = RLPy.RVector3( 0, 1, 0 )  # axis = "Y"
+
print(row0[1])
z_axis_vector = RLPy.RVector3( 0, 0, 1 )  # axis = "Z"   
+
print(row0[2])
 
+
print(row0[3])  
matrix3_orgin.FromAxisAngle( x_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
+
matrix3_orgin.FromAxisAngle( y_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
+
matrix3_orgin.FromAxisAngle( z_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
+
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== RotationX( self, fAngle ) ===
+
=== GetSimpleRTS (self, rkRotate, rkTranslate, rkScale) ===
  
Rotate this 3x3 matrix around the x-axis.
+
Retrieve rotation, translation, and scale data from this 4x4 matrix.
  
 
==== Parameters ====
 
==== Parameters ====
fAngle [IN] angle in radians - float
+
:'''rkRotate''' [IN] Angle of x-axis in radians - float
 +
:'''rkTranslate'''[IN] Angle of y-axis in radians - float
 +
:'''rkScale  '''[IN] Angle of z-axis in radians - float
  
 
==== Returns ====
 
==== Returns ====
:The rotated 3x3 matrix around the x-axis - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
 
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_orgin = RLPy.RMatrix3()
+
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
matrix3_orgin.MakeIdentity()
+
                              1, 1,-1,-2,
matrix3_orgin.RotationX( 90 * RLPy.RMath.CONST_DEG_TO_RAD )
+
                              1,-1,-1, 2,
 +
                              1,-2, 1,-1 )
 +
rotate = RLPy.RMatrix3()
 +
translate = RLPy.RVector3()
 +
scale = RLPy.RVector3()
 +
matrix4_value.GetSimpleRTS( rotate, translate, scale )
 +
row0 = rotate.GetRow(0)
 +
 
 +
print(row0[0])
 +
print(row0[1])
 +
print(row0[2])
 +
 
 +
print(translate[0])
 +
print(translate[1])
 +
print(translate[2])
 +
 
 +
print(scale[0])
 +
print(scale[1])
 +
print(scale[2])      
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== RotationY( self, fAngle ) ===
+
=== GetSimpleRotate (self, rkRotate) ===
  
Rotate this 3x3 matrix around the y-axis。
+
Retrieve rotation data from this 4x4 matrix.
  
 
==== Parameters ====
 
==== Parameters ====
:'''fAngle''' [IN] angle in radians - float
+
:'''rkRotate'''[IN] Rotation Matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
  
 
==== Returns ====
 
==== Returns ====
:The rotated 3x3 matrix around the y-axis - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
+
:3x3 matrix rotation data of this 4x4 matrix.
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_orgin = RLPy.RMatrix3()
+
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
matrix3_orgin.MakeIdentity()
+
                              1, 1,-1,-2,
matrix3_orgin.RotationY( 90 * RLPy.RMath.CONST_DEG_TO_RAD )
+
                              1,-1,-1, 2,
 +
                              1,-2, 1,-1
 +
rotate = RLPy.RMatrix3()
 +
matrix4_value.GetSimpleRotate( rotate )
 +
row0 = rotate.GetRow(0)
 +
 
 +
print(row0[0])
 +
print(row0[1])
 +
print(row0[2])
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== RotationZ( self, fAngle ) ===
+
=== SetTranslateZero (self) ===
  
Rotation this 3x3 matrix around the z-axis.
+
Set the translation data in this 4x4 matrix to 0.
 +
 
 +
<syntaxhighlight lang="python">
 +
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 +
                              1, 1,-1,-2,
 +
                              1,-1,-1, 2,
 +
                              1,-2, 1,-1
 +
matrix4_value.SetTranslateZero()
 +
row3 = matrix4_value.GetRow(3)
 +
 
 +
print(row3[0] == 0)
 +
print(row3[1] == 0)
 +
print(row3[2] == 0)
 +
</syntaxhighlight>
 +
 
 +
=== RotationX (self, fAngle) ===
 +
 
 +
Rotation matrix for rotations around x-axis。
  
 
==== Parameters ====
 
==== Parameters ====
:'''fAngle''' [IN] angle in radians - float
+
:'''fAngle'''[IN] angle in radians - float
  
 
==== Returns ====
 
==== Returns ====
:A new 3x3 matrix of for rotations around z-axis - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
+
:Return a new matrix of for rotations around x-axis - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_orgin = RLPy.RMatrix3()
+
matrix4_orgin = RLPy.RMatrix4()
matrix3_orgin.MakeIdentity()
+
matrix4_orgin.MakeIdentity()
matrix3_orgin.RotationZ( 90 * RLPy.RMath.CONST_DEG_TO_RAD )
+
matrix4_orgin.RotationX( 90 * RLPy.RMath.CONST_DEG_TO_RAD )
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== AccuScale( self, rkScale ) ===
+
=== RotationY (self, fAngle) ===
  
Accumulate 3x3 matrix with scale vector.
+
Rotation matrix for rotations around y-axis.
  
 
==== Parameters ====
 
==== Parameters ====
rkScale [IN] Scale vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
+
:'''fAngle'''[IN] angle in radians - float
  
 
==== Returns ====
 
==== Returns ====
:A newly scaled matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
+
:Return a new matrix of for rotations around y-axis - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_orgin = RLPy.RMatrix3()
+
matrix4_orgin = RLPy.RMatrix4()
matrix3_orgin.MakeIdentity()
+
matrix4_orgin.MakeIdentity()
scale_vector = RLPy.RVector3( 2, 2, 2 )
+
matrix4_orgin.RotationY( 90 * RLPy.RMath.CONST_DEG_TO_RAD )
matrix3_orgin.AccuScale(scale_vector)
+
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== ToEulerAngle( self, rkScaleself, Order, rx, ry, rz ) ===
+
=== RotationZ (self, fAngle) ===
  
Convert 3x3 matrix to Euler angles.
+
Rotation matrix for rotations around z-axis.
  
 
==== Parameters ====
 
==== Parameters ====
:'''Order''' [IN] Euler order - RLPy.Rotation_Order
+
:'''fAngle'''[IN] angle in radians - float
:'''rx''' [OUT] Angle of x-axis in radians - float
+
 
:'''ry''' [OUT] Angle of y-axis in radians - float
+
==== Returns ====
:'''rz''' [OUT] Angle of z-axis in radians - float
+
:Return a new matrix of for rotations around z-axis - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_value = RLPy.RMatrix3( -0, -0,  1,
+
matrix4_orgin = RLPy.RMatrix4()
                                0, -1, -0,
+
matrix4_orgin.MakeIdentity()
                                1,  0, -0 )
+
matrix4_orgin.RotationZ( 90 * RLPy.RMath.CONST_DEG_TO_RAD )
euler_angle_x = 0
+
</syntaxhighlight>
euler_angle_y = 0
+
euler_angle_z = 0
+
result = matrix3_value.ToEulerAngle( RLPy.EEulerOrder_XYZ, euler_angle_x, euler_angle_y, euler_angle_z )
+
  
print(result[0] * RLPy.RMath.CONST_RAD_TO_DEG) # 180
+
=== RotateAxisAngle (self, rkAxis, fAngle) ===
print(result[1] * RLPy.RMath.CONST_RAD_TO_DEG) # 90
+
 
print(result[2] * RLPy.RMath.CONST_RAD_TO_DEG) # 0
+
Rotation matrix from axis angle.
 +
 
 +
==== Parameters ====
 +
:'''rkAxis'''[IN] axis vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
 +
:'''fAngle'''[IN] angle in radians - float
 +
 
 +
==== Returns ====
 +
:Return a new matrix from specified axis angle - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 
 +
<syntaxhighlight lang="python">
 +
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 +
                              1, 1,-1,-2,
 +
                              1,-1,-1, 2,
 +
                              1,-2, 1,-1
 +
x_axis_vector = RLPy.RVector3( 1, 0, 0 ) # axis = "X"
 +
y_axis_vector = RLPy.RVector3( 0, 1, 0 )  # axis = "Y"
 +
z_axis_vector = RLPy.RVector3( 0, 0, 1 )  # axis = "Z"   
 +
matrix4_value.RotateAxisAngle( x_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
 +
matrix4_value.RotateAxisAngle( y_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
 +
matrix4_value.RotateAxisAngle( z_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== FromEulerAngle( self, Order, rx, ry, rz ) ===
+
=== FromEulerAngle (self, Oreder, rx, ry, rz) ===
  
Convert Euler angle to a 3x3 matrix according to a rotation axis order.
+
Convert Euler angle to a 4x4 matrix according to a rotation axis order.
  
 
==== Parameters ====
 
==== Parameters ====
:'''Order''' [IN] Euler order - RLPy.Rotation_Order
+
:'''Oreder'''[IN] Euler order - RLPy.Rotation_Order'''rx'''[IN] Angle of x-axis in radians - float'''ry'''[IN] Angle of y-axis in radians - float'''rz'''[IN] Angle of z-axis in radians - float
:'''rx''' [IN] Angle of x-axis in radians - float
+
:'''ry''' [IN] Angle of y-axis in radians - float
+
:'''rz''' [IN] Angle of z-axis in radians - float
+
  
 
==== Returns ====
 
==== Returns ====
:A new matrix from specified axis angle - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
+
:Return a new matrix from specified axis angle - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_orgin = RLPy.RMatrix3()
 
 
euler_angle_x = 90 * RLPy.RMath.CONST_DEG_TO_RAD
 
euler_angle_x = 90 * RLPy.RMath.CONST_DEG_TO_RAD
 
euler_angle_y = 0
 
euler_angle_y = 0
 
euler_angle_z = 0
 
euler_angle_z = 0
matrix3_result = matrix3_orgin.FromEulerAngle( RLPy.EEulerOrder_XYZ, euler_angle_x, euler_angle_y, euler_angle_z)
+
matrix4_result = RLPy.RMatrix4().FromEulerAngle( RLPy.EEulerOrder_XYZ, euler_angle_x, euler_angle_y, euler_angle_z)
row0 = matrix3_result[0].GetRow(0)
+
row0 = matrix4_result[0].GetRow(0)
  
 
print(row0[0])
 
print(row0[0])
 
print(row0[1])
 
print(row0[1])
 
print(row0[2])
 
print(row0[2])
 +
print(row0[3])
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== FromSphereUnitVec( self, rkVec ) ===
+
=== SetSR (self, mSR) ===
  
Convert Euler angle to matrix.
+
Set scale and rotation part of the matrix。
  
 
==== Parameters ====
 
==== Parameters ====
:'''rkVec''' [IN] vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
+
:'''mSR'''[IN] 3x3 matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
  
 
==== Returns ====
 
==== Returns ====
:A new 3x3 matrix from sphere unit vector - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
+
:Return a new 4x4 matrix - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
vector = RLPy.RVector3( 0, 1, 0 )
+
matrix4_orgin = RLPy.RMatrix4()
matrix3_result = RLPy.RMatrix3().FromSphereUnitVec( vector )
+
matrix4_orgin.MakeIdentity()
row0 = matrix3_result.GetRow(0)
+
matrix3_rotate_value = RLPy.RMatrix3( 1, 0, 0,
 +
                                      0, 1, 0,
 +
                                      0, 0, 1 )
 +
matrix4_orgin.SetSR(matrix3_rotate_value)
 +
</syntaxhighlight>
  
 +
=== GetSR (self) ===
 +
 +
Get scale and rotation part of the matrix。
 +
 +
==== Returns ====
 +
:Return a 3x3 matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
 +
 +
<syntaxhighlight lang="python">
 +
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 +
                              1, 1,-1,-2,
 +
                              1,-1,-1, 2,
 +
                              1,-2, 1,-1
 +
result = matrix4_value.GetSR()
 +
row0 = result.GetRow(0)
 
print(row0[0])
 
print(row0[0])
 
print(row0[1])
 
print(row0[1])
Line 743: Line 877:
 
</syntaxhighlight>
 
</syntaxhighlight>
  
=== IsRightHandCoordinate( self ) ===
+
=== SetTranslate (self, vTranslate) ===
  
Obtain this 3x3 matrix's coordinate system.  '''True''' stands for right-handed coordinate system while '''False''' for left-handed.
+
Set translate of the matrix。
 +
 
 +
==== Parameters ====
 +
:'''vTranslate'''[IN] Translate vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
  
 
==== Returns ====
 
==== Returns ====
:'''True''' Right hand coordinate - bool
+
:Return a new matrix with the specified translation - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
:'''False''' Left hand coordinate - bool
+
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
matrix3_value = RLPy.RMatrix3( 1, 0, 0,
+
matrix4_orgin = RLPy.RMatrix4()
                              0, 1, 0,
+
matrix4_orgin.MakeIdentity()
                              0, 0, 1 )
+
matrix4_orgin.SetTranslate(RLPy.RVector3( 1, 2, 3 ) )
result = matrix3_value.IsRightHandCoordinate()
+
</syntaxhighlight>
  
print(result)
+
=== GetTranslate (self) ===
 +
 
 +
Get translate of the matrix。
 +
 
 +
==== Returns ====
 +
:Return a translate vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
 +
 
 +
<syntaxhighlight lang="python">
 +
matrix4_orgin = RLPy.RMatrix4()
 +
matrix4_orgin.MakeIdentity()
 +
matrix4_orgin.SetTranslate(RLPy.RVector3( 1, 2, 3 ) )
 +
result = matrix4_orgin.GetTranslate()
 +
 
 +
print(result[0] == 1)
 +
print(result[1] == 2)
 +
print(result[2] == 3)
 +
</syntaxhighlight>
 +
 
 +
=== AccuScale (self, rkScale) ===
 +
 
 +
Accumulate matrix with scale vector。
 +
 
 +
==== Parameters ====
 +
:'''rkScale'''[IN] Scale vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
 +
 
 +
==== Returns ====
 +
:Return a new matrix (*this) *= Accumulate - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 
 +
<syntaxhighlight lang="python">
 +
matrix4_orgin = RLPy.RMatrix4()
 +
matrix4_orgin.MakeIdentity()
 +
matrix4_orgin.AccuScale(RLPy.RVector3( 2, 2, 2 ) )
 +
matrix4_orgin.AccuScale(RLPy.RVector3( 3, 3, 3 ) )
 +
result = matrix4_orgin.GetSR()
 +
row0 = result.GetRow(0)
 +
print(row0[0] == 2*3)
 +
row1 = result.GetRow(1)
 +
print(row1[1] == 2*3)
 +
row2 = result.GetRow(2)
 +
print(row2[2] == 2*3)
 +
</syntaxhighlight>
 +
 
 +
=== AccuRotate (self, rkRotate) ===
 +
 
 +
Accumulate matrix with rotation matrix。
 +
 
 +
==== Parameters ====
 +
:'''rkRotate'''[IN] Rotation matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
 +
 
 +
==== Returns ====
 +
:Return a new matrix (*this) *= Accumulate - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 
 +
<syntaxhighlight lang="python">
 +
matrix4_orgin = RLPy.RMatrix4()
 +
matrix4_orgin.MakeIdentity()
 +
matrix3_orgin = RLPy.RMatrix3()
 +
matrix3_orgin.FromAxisAngle( RLPy.RVector3( 0, 1, 0 ), 90 * RLPy.RMath.CONST_DEG_TO_RAD )
 +
matrix4_orgin.AccuRotate(matrix3_orgin)
 +
matrix4_orgin.AccuRotate(matrix3_orgin)
 +
rotate = RLPy.RMatrix3()
 +
matrix4_orgin.GetSimpleRotate( rotate )
 +
row0 = rotate.GetRow(0)
 +
print(row0[0])
 +
print(row0[1])
 +
print(row0[2])
 +
</syntaxhighlight>
 +
 
 +
=== AccuTranslate (self, rkTranslate) ===
 +
 
 +
Accumulate matrix with translate vector。
 +
 
 +
==== Parameters ====
 +
:'''rkTranslate'''[IN] Translate vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
 +
 
 +
==== Returns ====
 +
:Return a new matrix (*this) *= Accumulate - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 
 +
<syntaxhighlight lang="python">
 +
matrix4_orgin = RLPy.RMatrix4()
 +
matrix4_orgin.MakeIdentity()
 +
matrix4_orgin.AccuTranslate(RLPy.RVector3( 1, 2, 3 ) )
 +
matrix4_orgin.AccuTranslate(RLPy.RVector3( 2, 2, 2 ) )
 +
row3 = matrix4_orgin.GetRow(3)
 +
print(row3[0] == 1+2)
 +
print(row3[1] == 2+2)
 +
print(row3[2] == 2+3)
 
</syntaxhighlight>
 
</syntaxhighlight>

Revision as of 20:36, 7 April 2020

Contents

Main article: Modules.
Last modified: 04/7/2020

Description

This class represent the transform data of RTransform. This class provides access to RLPy's internal 4x4 matrix operators and related functions.

Operators

+

The "addition" operator.

See Also: +=

matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
                           0, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0 )
matrix4_b = RLPy.RMatrix4( 2, 2, 2, 2,
                           0, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0 )
matrix4_result = matrix4_a + matrix4_b

print( matrix4_result.GetRow(0)[0] == 1+2 ) # true
print( matrix4_result.GetRow(0)[1] == 2+2 ) # true
print( matrix4_result.GetRow(0)[2] == 3+2 ) # true
print( matrix4_result.GetRow(0)[3] == 4+2 ) # true

-

The "subtraction" operator.

See Also: -=

matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
                           0, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0 )
matrix4_b = RLPy.RMatrix4( 2, 2, 2, 2,
                           0, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0 )
matrix4_result = matrix4_a - matrix4_b

print( matrix4_result.GetRow(0)[0] == 1-2 ) # true
print( matrix4_result.GetRow(0)[1] == 2-2 ) # true
print( matrix4_result.GetRow(0)[2] == 3-2 ) # true
print( matrix4_result.GetRow(0)[3] == 4-2 ) # true

*

The "multiplication" operator.

See Also: *=

matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
                           0, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0 )
matrix4_b = RLPy.RMatrix4( 2, 0, 0, 0,
                           2, 0, 0, 0,
                           2, 0, 0, 0,
                           2, 0, 0, 0 )
matrix4_result = matrix4_a * matrix4_b

print( matrix4_result.GetRow(0)[0] == 1*2 + 2*2 + 3*2 + 4*2  ) # true

/

The "division" operator.

See Also: /=

matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
                           0, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0 )
matrix4_result = matrix4_a / 2

print( matrix4_result.GetRow(0)[0] == 1/2 ) # true
print( matrix4_result.GetRow(0)[1] == 2/2 ) # true
print( matrix4_result.GetRow(0)[2] == 3/2 ) # true
print( matrix4_result.GetRow(0)[3] == 4/2 ) # true

-

The "unary minus" .

matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
                           0, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0 )
matrix4_result = -matrix4_a

print( matrix4_result.GetRow(0)[0] == -1 ) # true
print( matrix4_result.GetRow(0)[1] == -2 ) # true
print( matrix4_result.GetRow(0)[2] == -3 ) # true
print( matrix4_result.GetRow(0)[3] == -4 ) # true

==

The "equal to" operator. Performs a one-by-one comparison of the matrix array.

See Also: !=

matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
                           0, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0 )
matrix4_b = RLPy.RMatrix4( 1, 2, 3, 4,
                           0, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0 )

print( matrix4_a == matrix4_b ) # true

!=

The "not equal to" operator. Performs a one-by-one comparison of the matrix array.

See Also: ==

matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
                           0, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0 )
matrix4_b = RLPy.RMatrix4( 2, 2, 2, 2,
                           0, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0 )

print( matrix4_a != matrix4_b ) # true

>

The "greater than" operator. Performs a one-by-one comparison of the matrix array.

See Also: >=

matrix4_a = RLPy.RMatrix4( 1, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0 )
matrix4_b = RLPy.RMatrix4( 2, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0 )

print( matrix4_b > matrix4_a ) # true

>=

The "greater than or equal to" operator. Performs a one-by-one comparison of the matrix array.

See Also: >

matrix4_a = RLPy.RMatrix4( 1, 1, 1, 4,
                           0, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0 )
matrix4_b = RLPy.RMatrix4( 1, 1, 1, 8,
                           0, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0 )

print( matrix4_b >= matrix4_a ) # true

<

The "less than" operator. Performs a one-by-one comparison of the matrix array.

See Also: <=

matrix4_a = RLPy.RMatrix4( 2, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0 )
matrix4_b = RLPy.RMatrix4( 3, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0 )

print( matrix4_a < matrix4_b ) # true

<=

The "less than" operator. Performs a one-by-one comparison of the matrix array.

See Also: <

matrix4_a = RLPy.RMatrix4( 2, 2, 1, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0 )
matrix4_b = RLPy.RMatrix4( 2, 2, 5, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0,
                           0, 0, 0, 0 )

print( matrix4_a <= matrix4_b ) # true

+=

The "addition assignment" operator.

See Also: +

matrix4 =  RLPy.RMatrix4( 1, 2, 3, 4,
                          0, 0, 0, 0,
                          0, 0, 0, 0, 
                          0, 0, 0, 0 )
matrix4 += RLPy.RMatrix4( 2, 2, 2, 2,
                          0, 0, 0, 0,
                          0, 0, 0, 0,
                          0, 0, 0, 0 )

print( matrix4.GetRow(0)[0] == 1+2 ) # true
print( matrix4.GetRow(0)[1] == 2+2 ) # true
print( matrix4.GetRow(0)[2] == 3+2 ) # true
print( matrix4.GetRow(0)[3] == 4+2 ) # true

-=

The "subtraction assignment" operator.

See Also: -

matrix4 =  RLPy.RMatrix4( 1, 2, 3, 4,
                          0, 0, 0, 0,
                          0, 0, 0, 0,
                          0, 0, 0, 0 )
matrix4 -= RLPy.RMatrix4( 2, 2, 2, 2,
                          0, 0, 0, 0,
                          0, 0, 0, 0,
                          0, 0, 0, 0 )

print( matrix4.GetRow(0)[0] == 1-2 ) # true
print( matrix4.GetRow(0)[1] == 2-2 ) # true
print( matrix4.GetRow(0)[2] == 3-2 ) # true
print( matrix4.GetRow(0)[3] == 4-2 ) # true

*=

The "multiplication assignment" operator. For the calculation method, refer to the * operator.

See Also: *

matrix4 = RLPy.RMatrix4( 1, 2, 3, 4,
                         0, 0, 0, 0,
                         0, 0, 0, 0,
                         0, 0, 0, 0 )
matrix4 *= 2

print( matrix4.GetRow(0)[0] == 1*2 ) # true
print( matrix4.GetRow(0)[1] == 2*2 ) # true
print( matrix4.GetRow(0)[2] == 3*2 ) # true
print( matrix4.GetRow(0)[3] == 4*2 ) # true

/=

The "division assignment" operator. For the calculation method, refer to the / operator.

See Also: /

matrix4 = RLPy.RMatrix4( 1, 2, 3, 4,
                         0, 0, 0, 0,
                         0, 0, 0, 0,
                         0, 0, 0, 0 )
matrix4 /= 2

print( matrix4.GetRow(0)[0] == 1/2 ) # true
print( matrix4.GetRow(0)[1] == 2/2 ) # true
print( matrix4.GetRow(0)[2] == 3/2 ) # true
print( matrix4.GetRow(0)[3] == 4/2 ) # true

Member Functions

MakeIdentity (self)

This function can be used to initialize the 3x3 matrix. It is equivalent to setting the matrix to:

[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

Returns

This object - RMatrix4
matrix4 = RLPy.RMatrix4()
matrix4.MakeIdentity()

M (self, args)

Get the value of an element in a 4x4 matrix by row and column index.

Parameters

nRow[IN] Index of the row in the matrix - intnCol[IN] Index of the column in the matrix - int

Returns

The matrix element specified by row and col - float
matrix4 = RLPy.RMatrix4()
matrix4.MakeIdentity()

print(matrix4.M(0,0)) #

E (self, args)

Get the value of an element in a 3x3 matrix by index number (from 0 to 15);

Parameters

nRow[IN] Index of the matrix.

Returns

The matrix element specified by index - float
matrix4 = RLPy.RMatrix4()
matrix4.MakeIdentity()

print(matrix4.E(0)) #

GetRow (self, nR)

Retreive a row inside a 4x4 matrix.

Parameters

nRow[IN] Index of the row in the matrix.

Returns

The row vector of the matrix - RVector4
matrix4 = RLPy.RMatrix4()
matrix4.MakeIdentity()
row0 = matrix4.GetRow(0)

print(row0[0])
print(row0[1])
print(row0[2])
print(row0[3])

GetColumn (self, nC)

Retrieve a column inside a 4x4 matrix.

Parameters

nRow[IN] Index of the column in the matrix.

Returns

The column vector of the matrix - RVector4
matrix4 = RLPy.RMatrix4()
matrix4.MakeIdentity()
col0 = matrix4.GetColumn(0)

print(col0[0])
print(col0[1])
print(col0[2])
print(col0[3])

Transpose (self)

Obtain the transposed matrix by transposing the current m * n matrix into an n * m matrix by row-column swapping.

Returns

A new matrix containing this matrix's transpose - RMatrix4
matrix4_orgin = RLPy.RMatrix4(  1,  2,  3,  4,
                                5,  6,  7,  8,
                                9, 10, 11, 12,
                               13, 14, 15, 16 )
matrix4_transpose = matrix4_orgin.Transpose()
row0 = matrix4_orgin.GetRow(0)
col0 = matrix4_transpose.GetColumn(0)

print(row0[0] == col0[0])
print(row0[1] == col0[1])
print(row0[2] == col0[2])
print(row0[3] == col0[3])

TransposeTimes (self, mM)

Multiply a transposed version of a 4x4 matrix with itself.

Parameters

mM[IN] the matrix - RMatrix4

Returns

A new matrix. (this^T * mM) - RMatrix4
matrix4_orgin = RLPy.RMatrix4(  1,  2,  3,  4,
                                5,  6,  7,  8,
                                9, 10, 11, 12,
                               13, 14, 15, 16 )
matrix4_transpose_value = RLPy.RMatrix4( 2, 0, 0, 0,
                                         0, 2, 0, 0,
                                         0, 0, 2, 0,
                                         0, 0, 0, 2 )
matrix4_transpose_times = matrix4_orgin.TransposeTimes(matrix4_transpose_value)
row0 = matrix4_orgin.GetRow(0)
col0 = matrix4_transpose_times.GetColumn(0)

print(row0[0]*2 == col0[0])
print(row0[1]*2 == col0[1])
print(row0[2]*2 == col0[2])
print(row0[3]*2 == col0[3])

TimesTranspose (self, mM)

Multiply this 4x4 matrix with a transposed version of itself.

Parameters

mM[IN] the matrix - RMatrix4

Returns

A new matrix. (this * M^T) - RMatrix4
matrix4_orgin = RLPy.RMatrix4(  1,  2,  3,  4,
                                5,  6,  7,  8,
                                9, 10, 11, 12,
                               13, 14, 15, 16 )
matrix4_transpose_value = RLPy.RMatrix4( 3, 0, 0, 0,
                                         0, 3, 0, 0,
                                         0, 0, 3, 0,
                                         0, 0, 0, 3 )
matrix4_times_transpose = matrix4_orgin.TimesTranspose(matrix4_transpose_value)
row0 = matrix4_orgin.GetColumn(0)
col0 = matrix4_times_transpose.GetColumn(0)

print(row0[0]*3 == col0[0])
print(row0[1]*3 == col0[1])
print(row0[2]*3 == col0[2])
print(row0[3]*3 == col0[3])

Inverse (self)

Obtain the inverse (reciprocal) of this 4x4 matrix (A^-1).

Returns

A new matrix containing this matrix's inverse - RMatrix4
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
                               1, 1,-1,-2,
                               1,-1,-1, 2,
                               1,-2, 1,-1 )
matrix4_inverse = matrix4_value.Inverse()
row0_inverse = matrix4_inverse.GetRow(0)

print(row0_inverse[0])
print(row0_inverse[1])
print(row0_inverse[2])
print(row0_inverse[3])

Adjoint (self)

Adjugate this 4x4 matrix.

Returns

A new matrix containing this matrix's adjoint - RMatrix4
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
                               1, 1,-1,-2,
                               1,-1,-1, 2,
                               1,-2, 1,-1 )
matrix4_Adjoint = matrix4_value.Adjoint()
row0_Adjoint = matrix4_Adjoint.GetRow(0)

print(row0_Adjoint[0])
print(row0_Adjoint[1])
print(row0_Adjoint[2])
print(row0_Adjoint[3])

AdjointTranspose (self)

Adjugate and transpose this 4x4 matrix.

Returns

A new matrix - RMatrix4
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
                               1, 1,-1,-2,
                               1,-1,-1, 2,
                               1,-2, 1,-1 )
matrix4_Adjoint_transpose = matrix4_value.AdjointTranspose()
col0_Adjoint_transpose = matrix4_Adjoint_transpose.GetColumn(0)

print(col0_Adjoint_transpose[0] == row0_Adjoint[0])
print(col0_Adjoint_transpose[1] == row0_Adjoint[1])
print(col0_Adjoint_transpose[2] == row0_Adjoint[2])
print(col0_Adjoint_transpose[3] == row0_Adjoint[3])

InverseTranspose (self)

Invert and transpose this 4x4 matrix.

Returns

A new matrix - RMatrix4
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
                               1, 1,-1,-2,
                               1,-1,-1, 2,
                               1,-2, 1,-1 )
matrix4_inverse_transpose = matrix4_value.InverseTranspose()
col0_inverse_transpose = matrix4_inverse_transpose.GetColumn(0)

print(col0_inverse_transpose[0] == row0_inverse[0])
print(col0_inverse_transpose[1] == row0_inverse[1])
print(col0_inverse_transpose[2] == row0_inverse[2])
print(col0_inverse_transpose[3] == row0_inverse[3])

Determinant (self)

Obtain the scalar value for this 4x4 matrix (|A|).

Returns

The determinant of the matrix - float
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
                               1, 1,-1,-2,
                               1,-1,-1, 2,
                               1,-2, 1,-1 )
print(matrix4_value.Determinant())

MaxColumn (self)

Find the maximum absolute value within this 4x4 matrix, and return the column in which the value is located. If all of the elements within the 4x4 matrix are 0 then return -1.

Returns

Return index of column of M containing maximum abs entry, or -1 if M = 0 - int
matrix4_column_value = RLPy.RMatrix4( 1, 2, 3,-5,
                                      0, 0, 0, 0,
                                      0, 0, 0, 0,
                                      0, 0, 0, 0 )
print(matrix4_column_value.MaxColumn()) # column:3 -> abs(-5)

MaxRow (self)

Find the maximum absolute value within this 4x4 matrix, and return the row in which the value is located. If all of the elements within the 4x4 matrix are 0 then return -1.

Returns

Return index of row of M containing maximum abs entry, or -1 if M = 0 - int
matrix4_row_value = RLPy.RMatrix4( 1, 0, 0, 0,
                                   2, 0, 0, 0,
                                   3, 0, 0, 0,
                                  -5, 0, 0, 0 )
print(matrix4_value.MaxRow()) # Row:3 -> abs(-5)

OneNorm (self)

Return the sum of the column elements that contain the largest absolute values.

Returns

Return Norm - float
matrix4_row_value = RLPy.RMatrix4( 1, 0, 0, 0,
                                   2, 0, 0, 0,
                                   3, 0, 0, 0,
                                  -5, 0, 0, 0 )
print(matrix4_row_value.OneNorm()) # 11 -> 1+2+abs(-5)

InfNorm (self)

Return the sum of the row elements that contain the largest absolute values.

Returns

Return InfNorm - float
matrix4_column_value = RLPy.RMatrix4( 1, 2, 3,-5,
                                      0, 0, 0, 0,
                                      0, 0, 0, 0,
                                      0, 0, 0, 0 )
print(matrix4_column_value.InfNorm()) # 11 -> 1+2+abs(-5)

FromRTS (self, kRotate, kTranslate, kScale)

Apply rotate, translate, and scale data to a 4x4 matrix.

Parameters

kRotate [IN] Rotate Matrix - RMatrix3
kTranslate[IN] Translate vector - RVector3
kScale [IN] Scale vector - RVector3

Returns

Return a new matrix from RTS - RMatrix4
rotate = RLPy.RMatrix3( 1, 0, 0,
                        0, 1, 0,
                        0, 0, 1 )
translate = RLPy.RVector3( 1, 0, 0 )
scale = RLPy.RVector3( 2, 2, 2 )
matrix4_result =  RLPy.RMatrix4().FromRTS( rotate, translate, scale )
row0 = matrix4_result.GetRow(0)

print(row0[0])
print(row0[1])
print(row0[2])
print(row0[3])

GetSimpleRTS (self, rkRotate, rkTranslate, rkScale)

Retrieve rotation, translation, and scale data from this 4x4 matrix.

Parameters

rkRotate [IN] Angle of x-axis in radians - float
rkTranslate[IN] Angle of y-axis in radians - float
rkScale [IN] Angle of z-axis in radians - float

Returns

matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
                               1, 1,-1,-2,
                               1,-1,-1, 2,
                               1,-2, 1,-1 )
rotate = RLPy.RMatrix3()
translate = RLPy.RVector3()
scale = RLPy.RVector3()
matrix4_value.GetSimpleRTS( rotate, translate, scale )
row0 = rotate.GetRow(0)

print(row0[0])
print(row0[1])
print(row0[2])

print(translate[0])
print(translate[1])
print(translate[2])

print(scale[0])
print(scale[1])
print(scale[2])

GetSimpleRotate (self, rkRotate)

Retrieve rotation data from this 4x4 matrix.

Parameters

rkRotate[IN] Rotation Matrix - RMatrix3

Returns

3x3 matrix rotation data of this 4x4 matrix.
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
                               1, 1,-1,-2,
                               1,-1,-1, 2,
                               1,-2, 1,-1 
rotate = RLPy.RMatrix3()
matrix4_value.GetSimpleRotate( rotate )
row0 = rotate.GetRow(0)

print(row0[0])
print(row0[1])
print(row0[2])

SetTranslateZero (self)

Set the translation data in this 4x4 matrix to 0.

matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
                               1, 1,-1,-2,
                               1,-1,-1, 2,
                               1,-2, 1,-1 
matrix4_value.SetTranslateZero()
row3 = matrix4_value.GetRow(3)

print(row3[0] == 0)
print(row3[1] == 0)
print(row3[2] == 0)

RotationX (self, fAngle)

Rotation matrix for rotations around x-axis。

Parameters

fAngle[IN] angle in radians - float

Returns

Return a new matrix of for rotations around x-axis - RMatrix4
matrix4_orgin = RLPy.RMatrix4()
matrix4_orgin.MakeIdentity()
matrix4_orgin.RotationX( 90 * RLPy.RMath.CONST_DEG_TO_RAD )

RotationY (self, fAngle)

Rotation matrix for rotations around y-axis.

Parameters

fAngle[IN] angle in radians - float

Returns

Return a new matrix of for rotations around y-axis - RMatrix4
matrix4_orgin = RLPy.RMatrix4()
matrix4_orgin.MakeIdentity()
matrix4_orgin.RotationY( 90 * RLPy.RMath.CONST_DEG_TO_RAD )

RotationZ (self, fAngle)

Rotation matrix for rotations around z-axis.

Parameters

fAngle[IN] angle in radians - float

Returns

Return a new matrix of for rotations around z-axis - RMatrix4
matrix4_orgin = RLPy.RMatrix4()
matrix4_orgin.MakeIdentity()
matrix4_orgin.RotationZ( 90 * RLPy.RMath.CONST_DEG_TO_RAD )

RotateAxisAngle (self, rkAxis, fAngle)

Rotation matrix from axis angle.

Parameters

rkAxis[IN] axis vector - RVector3
fAngle[IN] angle in radians - float

Returns

Return a new matrix from specified axis angle - RMatrix4
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
                               1, 1,-1,-2,
                               1,-1,-1, 2,
                               1,-2, 1,-1 
x_axis_vector = RLPy.RVector3( 1, 0, 0 )  # axis = "X"
y_axis_vector = RLPy.RVector3( 0, 1, 0 )  # axis = "Y"
z_axis_vector = RLPy.RVector3( 0, 0, 1 )  # axis = "Z"    
matrix4_value.RotateAxisAngle( x_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
matrix4_value.RotateAxisAngle( y_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
matrix4_value.RotateAxisAngle( z_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )

FromEulerAngle (self, Oreder, rx, ry, rz)

Convert Euler angle to a 4x4 matrix according to a rotation axis order.

Parameters

Oreder[IN] Euler order - RLPy.Rotation_Orderrx[IN] Angle of x-axis in radians - floatry[IN] Angle of y-axis in radians - floatrz[IN] Angle of z-axis in radians - float

Returns

Return a new matrix from specified axis angle - RMatrix4
euler_angle_x = 90 * RLPy.RMath.CONST_DEG_TO_RAD
euler_angle_y = 0
euler_angle_z = 0
matrix4_result = RLPy.RMatrix4().FromEulerAngle( RLPy.EEulerOrder_XYZ, euler_angle_x, euler_angle_y, euler_angle_z)
row0 = matrix4_result[0].GetRow(0)

print(row0[0])
print(row0[1])
print(row0[2])
print(row0[3])

SetSR (self, mSR)

Set scale and rotation part of the matrix。

Parameters

mSR[IN] 3x3 matrix - RMatrix3

Returns

Return a new 4x4 matrix - RMatrix4
matrix4_orgin = RLPy.RMatrix4()
matrix4_orgin.MakeIdentity()
matrix3_rotate_value = RLPy.RMatrix3( 1, 0, 0,
                                      0, 1, 0,
                                      0, 0, 1 )
matrix4_orgin.SetSR(matrix3_rotate_value)

GetSR (self)

Get scale and rotation part of the matrix。

Returns

Return a 3x3 matrix - RMatrix3
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
                               1, 1,-1,-2,
                               1,-1,-1, 2,
                               1,-2, 1,-1 
result = matrix4_value.GetSR()
row0 = result.GetRow(0)
print(row0[0])
print(row0[1])
print(row0[2])

SetTranslate (self, vTranslate)

Set translate of the matrix。

Parameters

vTranslate[IN] Translate vector - RVector3

Returns

Return a new matrix with the specified translation - RMatrix4
matrix4_orgin = RLPy.RMatrix4()
matrix4_orgin.MakeIdentity()
matrix4_orgin.SetTranslate(RLPy.RVector3( 1, 2, 3 ) )

GetTranslate (self)

Get translate of the matrix。

Returns

Return a translate vector - RVector3
matrix4_orgin = RLPy.RMatrix4()
matrix4_orgin.MakeIdentity()
matrix4_orgin.SetTranslate(RLPy.RVector3( 1, 2, 3 ) )
result = matrix4_orgin.GetTranslate()

print(result[0] == 1)
print(result[1] == 2)
print(result[2] == 3)

AccuScale (self, rkScale)

Accumulate matrix with scale vector。

Parameters

rkScale[IN] Scale vector - RVector3

Returns

Return a new matrix (*this) *= Accumulate - RMatrix4
matrix4_orgin = RLPy.RMatrix4()
matrix4_orgin.MakeIdentity()
matrix4_orgin.AccuScale(RLPy.RVector3( 2, 2, 2 ) )
matrix4_orgin.AccuScale(RLPy.RVector3( 3, 3, 3 ) )
result = matrix4_orgin.GetSR()
row0 = result.GetRow(0)
print(row0[0] == 2*3)
row1 = result.GetRow(1)
print(row1[1] == 2*3)
row2 = result.GetRow(2)
print(row2[2] == 2*3)

AccuRotate (self, rkRotate)

Accumulate matrix with rotation matrix。

Parameters

rkRotate[IN] Rotation matrix - RMatrix3

Returns

Return a new matrix (*this) *= Accumulate - RMatrix4
matrix4_orgin = RLPy.RMatrix4()
matrix4_orgin.MakeIdentity()
matrix3_orgin = RLPy.RMatrix3()
matrix3_orgin.FromAxisAngle( RLPy.RVector3( 0, 1, 0 ), 90 * RLPy.RMath.CONST_DEG_TO_RAD )
matrix4_orgin.AccuRotate(matrix3_orgin)
matrix4_orgin.AccuRotate(matrix3_orgin)
rotate = RLPy.RMatrix3()
matrix4_orgin.GetSimpleRotate( rotate )
row0 = rotate.GetRow(0)
print(row0[0])
print(row0[1])
print(row0[2])

AccuTranslate (self, rkTranslate)

Accumulate matrix with translate vector。

Parameters

rkTranslate[IN] Translate vector - RVector3

Returns

Return a new matrix (*this) *= Accumulate - RMatrix4
matrix4_orgin = RLPy.RMatrix4()
matrix4_orgin.MakeIdentity()
matrix4_orgin.AccuTranslate(RLPy.RVector3( 1, 2, 3 ) )
matrix4_orgin.AccuTranslate(RLPy.RVector3( 2, 2, 2 ) )
row3 = matrix4_orgin.GetRow(3)
print(row3[0] == 1+2)
print(row3[1] == 2+2)
print(row3[2] == 2+3)