Difference between revisions of "IC Python API:RLPy RMatrix4"

From Reallusion Wiki!
Jump to: navigation, search
(Created page with "{{TOC}} {{Parent|IC_Python_API:RL_Python_Modules|Modules}} ==Detailed Description== This class represent the 4x4 matrix. ==Operators== This class supports the following operat...")
 
m
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
{{TOC}}
 
{{TOC}}
 
{{Parent|IC_Python_API:RL_Python_Modules|Modules}}
 
{{Parent|IC_Python_API:RL_Python_Modules|Modules}}
==Detailed Description==
+
{{last_modified}}
This class represent the 4x4 matrix.
+
 
==Operators==
+
== Description ==
This class supports the following operators:
+
 
{| class="wikitable"
+
This class represent the transform data of RTransform.  This class provides access to RLPy's internal 4x4 matrix operators and related functions.
!Member
+
 
!Operation
+
== Constructor & Destructor ==
!Syntax
+
 
!Description
+
=== __init__ ( self, M00 ,M01, M02, M03, M10, M11, M12, M13, M20, M21, M22, M23, M30, M31, M32, M33 ) ===
!Example
+
 
|-
+
The constructor. Initialize a new [[IC_Python_API:RLPy_RMatrix4|RMatrix4]] with [[IC_Python_API:RLPy_RMatrix4|RMatrix4]] Item Value.
! scope="row"|__add__
+
 
|Addition
+
==== Parameters ====
|a + b
+
:'''M00''' [IN] initialization value - float
|Adds values on either side of the operator.
+
:'''M01''' [IN] initialization value - float
|a + b = 30
+
:'''M02''' [IN] initialization value - float
|-
+
:'''M03''' [IN] initialization value - float
! scope="row"|__sub__
+
:'''M10''' [IN] initialization value - float
|Subtraction
+
:'''M11''' [IN] initialization value - float
|a - b
+
:'''M12''' [IN] initialization value - float
|Subtracts right hand operand from left hand operand.
+
:'''M13''' [IN] initialization value - float
|a – b = -10
+
:'''M20''' [IN] initialization value - float
|-
+
:'''M21''' [IN] initialization value - float
! scope="row"|__mul__
+
:'''M22''' [IN] initialization value - float
|Multiplication
+
:'''M23''' [IN] initialization value - float
|a * b
+
:'''M30''' [IN] initialization value - float
|Multiplies values on either side of the operator.
+
:'''M31''' [IN] initialization value - float
|a * b = 200
+
:'''M32''' [IN] initialization value - float
|-
+
:'''M33''' [IN] initialization value - float
! scope="row"|__truediv__
+
 
|Division
+
==== Returns ====
|a / b
+
:Returns the row vector of the matrix - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
|Divides left hand operand by right hand operand.
+
 
|b / a = 2
+
<syntaxhighlight lang="python" line='line'>
|-
+
matrix4 = RLPy.RMatrix4( 1,  2,  3,  4,
! scope="row"|__neg__
+
                        5,  6,  7,  8,
|Negation
+
                        9,  10, 11, 12,
| -a
+
                        13, 14, 15, 16 )
|Return the value negated.
+
| a = -b
+
|-
+
! scope="row"|__eq__
+
|Equality
+
|a == b
+
|If the values of two operands are equal, then the condition becomes true.
+
|(a == b) is not true.
+
|-
+
! scope="row"|__ne__
+
|Difference
+
|a != b
+
|If values of two operands are not equal, then condition becomes true.
+
|(a != b) is true.
+
|-
+
! scope="row"|__gt__
+
|Greater Than
+
|a > b
+
|If the value of left operand is greater than the value of right operand, then condition becomes true.
+
|(a > b) is not true.
+
|-
+
! scope="row"|__lt__
+
|Less Than
+
|a < b
+
|If the value of left operand is less than the value of right operand, then condition becomes true.
+
|(a < b) is true.
+
|-
+
! scope="row"|__ge__
+
|Greater Than or Equal
+
|a >= b
+
|If the value of left operand is greater than or equal to the value of right operand, then condition becomes true.
+
|(a >= b) is not true.
+
|-
+
! scope="row"|__le__
+
|Less or Equal
+
|a <= b
+
|If the value of left operand is less than or equal to the value of right operand, then condition becomes true.
+
|(a <= b) is true.
+
|-
+
! scope="row"|__iadd__
+
|Addition (Inplace)
+
|a += b
+
|It adds right operand to the left operand and assign the result to left operand.
+
|c += a is equivalent to c = c + a
+
|-
+
! scope="row"|__isub__
+
|Subtraction (Inplace)
+
|a -= b
+
|It subtracts right operand from the left operand and assign the result to left operand.
+
|c -= a is equivalent to c = c - a
+
|-
+
! scope="row"|__imul__
+
|Multiply (Inplace)
+
|a *= b
+
|It multiplies right operand with the left operand and assign the result to left operand.
+
|c *= a is equivalent to c = c * a
+
|-
+
! scope="row"|__itruediv__
+
|Divide (Inplace)
+
|a /= b
+
|It divides left operand with the right operand and assign the result to left operand.
+
|c /= a is equivalent to c = c / ac /= a is equivalent to c = c / a
+
|}
+
==Member Functions==
+
===AccuRotate===
+
<syntaxhighlight lang="Python">
+
RLPy.RMatrix4.AccuRotate ( self, rkRotate )
+
 
</syntaxhighlight>
 
</syntaxhighlight>
Accumulate matrix with rotation matrix.
 
====Parameters====
 
<div style="margin-left: 2em;">
 
  
'''rkRotate''' [IN] Rotation matrix - RLPy.RMatrix3
+
=== __init__ ( self, Oreder, rx, ty, rz ) ===
</div>
+
 
====Returns====
+
The constructor. Initialize a new [[IC_Python_API:RLPy_RMatrix4|RMatrix4]] with Order and angle.
<div style="margin-left: 2em;">Return a new matrix (*this) *= Accumulate - RLPy.RMatrix4
+
</div>
+
==== Parameters ====
-----
+
:'''Oreder''' [IN] Euler order - RLPy.Rotation_Order
===AccuScale===
+
:'''rx''' [IN] Angle of x-axis in radians - float
<syntaxhighlight lang="Python">
+
:'''ry''' [IN] Angle of y-axis in radians - float
RLPy.RMatrix4.AccuScale ( self, rkScale )
+
:'''rz''' [IN] Angle of z-axis in radians - float
 +
 
 +
==== Returns ====
 +
:Returns the row vector of the matrix - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
euler_angle_x = 90 * RLPy.RMath.CONST_DEG_TO_RAD
 +
euler_angle_y = 0
 +
euler_angle_z = 0
 +
matrix4 = RLPy.RMatrix4( RLPy.EEulerOrder_XYZ, euler_angle_x, euler_angle_y, euler_angle_z )
 
</syntaxhighlight>
 
</syntaxhighlight>
Accumulate matrix with scale vector.
 
====Parameters====
 
<div style="margin-left: 2em;">
 
  
'''rkScale''' [IN] Scale vector - RLPy.RVector3
+
=== __init__ ( self, rkRotate ) ===
</div>
+
 
====Returns====
+
The constructor. Initialize a new [[IC_Python_API:RLPy_RMatrix4|RMatrix4]] with [[IC_Python_API:RLPy_RMatrix3|RMatrix3]].
<div style="margin-left: 2em;">Return a new matrix (*this) *= Accumulate - RLPy.RMatrix4
+
 
</div>
+
==== Parameters ====
-----
+
:'''rkRotate''' [IN] Rotation 3x3 matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
===AccuTranslate===
+
 
<syntaxhighlight lang="Python">
+
==== Returns ====
RLPy.RMatrix4.AccuTranslate ( self, rkTranslate )
+
:Returns the row vector of the matrix - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
rotate = RLPy.RMatrix3( 1, 0, 0,
 +
                        0, 2, 0,
 +
                        0, 0, 3 )
 +
matrix4 = RLPy.RMatrix4( rotate )
 
</syntaxhighlight>
 
</syntaxhighlight>
Accumulate matrix with translate vector.
 
====Parameters====
 
<div style="margin-left: 2em;">
 
  
'''rkTranslate''' [IN] Translate vector - RLPy.RVector3
+
=== __init__ ( self, kRotate, kTranslate, kScale ) ===
</div>
+
 
====Returns====
+
The constructor. Initialize a new [[IC_Python_API:RLPy_RMatrix4|RMatrix4]] with RTS.
<div style="margin-left: 2em;">Return a new matrix (*this) *= Accumulate - RLPy.RMatrix4
+
 
</div>
+
==== Parameters ====
-----
+
:'''rkRotate''' [IN] Rotation matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
===Adjoint===
+
:'''rkTranslate''' [IN] Translate vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
<syntaxhighlight lang="Python">
+
:'''rkScale''' [IN] Scale vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
RLPy.RMatrix4.Adjoint ( self )
+
 
 +
==== Returns ====
 +
:Returns the row vector of the matrix - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
rotate = RLPy.RMatrix3( 1, 0, 0,
 +
                        0, 2, 0,
 +
                        0, 0, 3 )
 +
translate = RLPy.RVector3( 1,2,3 )
 +
scale = RLPy.RVector3( 2,2,2 )
 +
matrix4 = RLPy.RMatrix4( rotate, translate, scale )
 
</syntaxhighlight>
 
</syntaxhighlight>
Inverse times determinant.
+
 
====Returns====
+
=== __init__ ( self, args ) ===
<div style="margin-left: 2em;">A new matrix containing this matrix's adjoint - RLPy.RMatrix4
+
 
</div>
+
The constructor. Initialize a new 4x4 matrix object with another [[IC_Python_API:RLPy_RMatrix4|RMatrix4]] object.
-----
+
 
===AdjointTranspose===
+
==== Parameters ====
<syntaxhighlight lang="Python">
+
:'''args''' [IN] a 4x4 matrix object - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
RLPy.RMatrix4.AdjointTranspose ( self )
+
 
 +
==== Returns ====
 +
:Returns the row vector of the matrix - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4 = RLPy.RMatrix4( 1,  2,  3,  4,
 +
                        5,  6,  7,  8,
 +
                        9,  10, 11, 12,
 +
                        13, 14, 15, 16 )
 +
matrix4_copy = RLPy.RMatrix4( matrix4 )
 +
print( matrix4_copy == matrix4 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
Transpose of inverse times determinant.
+
 
====Returns====
+
== Operators ==
<div style="margin-left: 2em;">A new matrix - RLPy.RMatrix4
+
 
</div>
+
=== + ===
-----
+
 
===Determinant===
+
The "addition" operator.
<syntaxhighlight lang="Python">
+
 
RLPy.RMatrix4.Determinant ( self )
+
See Also: [[#+=|+=]]
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
matrix4_b = RLPy.RMatrix4( 2, 2, 2, 2,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
matrix4_result = matrix4_a + matrix4_b
 +
 
 +
print( matrix4_result.GetRow(0)[0] == 1+2 ) # true
 +
print( matrix4_result.GetRow(0)[1] == 2+2 ) # true
 +
print( matrix4_result.GetRow(0)[2] == 3+2 ) # true
 +
print( matrix4_result.GetRow(0)[3] == 4+2 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
The matrix's determinant.
+
 
====Returns====
+
=== - ===
<div style="margin-left: 2em;">The determinant of the matrix - float
+
 
</div>
+
The "subtraction" operator.
-----
+
 
===E===
+
See Also: [[#-=|-=]]
<syntaxhighlight lang="Python">
+
 
RLPy.RMatrix4.E ( self, args )
+
<syntaxhighlight lang="python" line='line'>
 +
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
matrix4_b = RLPy.RMatrix4( 2, 2, 2, 2,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
matrix4_result = matrix4_a - matrix4_b
 +
 
 +
print( matrix4_result.GetRow(0)[0] == 1-2 ) # true
 +
print( matrix4_result.GetRow(0)[1] == 2-2 ) # true
 +
print( matrix4_result.GetRow(0)[2] == 3-2 ) # true
 +
print( matrix4_result.GetRow(0)[3] == 4-2 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
Get the matrix element for the specified index(0~15).
 
====Parameters====
 
<div style="margin-left: 2em;">
 
  
'''nRow''' [IN] Index of the matrix.
+
=== * ===
</div>
+
 
====Returns====
+
The "multiplication" operator.
<div style="margin-left: 2em;">The matrix element specified by index - float
+
 
</div>
+
See Also: [[#*=|*=]]
-----
+
 
===FromEulerAngle===
+
<syntaxhighlight lang="python" line='line'>
<syntaxhighlight lang="Python">
+
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
RLPy.RMatrix4.FromEulerAngle ( self, Oreder, rx, ry, rz )
+
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
matrix4_b = RLPy.RMatrix4( 2, 0, 0, 0,
 +
                          2, 0, 0, 0,
 +
                          2, 0, 0, 0,
 +
                          2, 0, 0, 0 )
 +
matrix4_result = matrix4_a * matrix4_b
 +
 
 +
print( matrix4_result.GetRow(0)[0] == 1*2 + 2*2 + 3*2 + 4*2  ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
Rotation matrix from Euler angle.
 
====Parameters====
 
<div style="margin-left: 2em;">
 
  
'''Oreder''' [IN] Euler order - RLPy.Rotation_Order
+
=== / ===
  
'''rx''' [IN] Angle of x-axis in radians - float
+
The "division" operator.
  
'''ry''' [IN] Angle of y-axis in radians - float
+
See Also: [[#/=|/=]]
  
'''rz''' [IN] Angle of z-axis in radians - float
+
<syntaxhighlight lang="python" line='line'>
</div>
+
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
====Returns====
+
                          0, 0, 0, 0,
<div style="margin-left: 2em;">Return a new matrix from specified axis angle - RLPy.RMatrix4
+
                          0, 0, 0, 0,
</div>
+
                          0, 0, 0, 0 )
-----
+
matrix4_result = matrix4_a / 2
===GetColumn===
+
 
<syntaxhighlight lang="Python">
+
print( matrix4_result.GetRow(0)[0] == 1/2 ) # true
RLPy.RMatrix4.GetColumn ( self, nC )
+
print( matrix4_result.GetRow(0)[1] == 2/2 ) # true
 +
print( matrix4_result.GetRow(0)[2] == 3/2 ) # true
 +
print( matrix4_result.GetRow(0)[3] == 4/2 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
Get the matrix element for the specified column.
 
====Parameters====
 
<div style="margin-left: 2em;">
 
  
'''nRow''' [IN] Index of the column in the matrix.
+
=== - ===
</div>
+
 
====Returns====
+
The "unary minus" .
<div style="margin-left: 2em;">The column vector of the matrix - RLPy.RVector4
+
 
</div>
+
<syntaxhighlight lang="python" line='line'>
-----
+
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
===GetRow===
+
                          0, 0, 0, 0,
<syntaxhighlight lang="Python">
+
                          0, 0, 0, 0,
RLPy.RMatrix4.GetRow ( self, nR )
+
                          0, 0, 0, 0 )
 +
matrix4_result = -matrix4_a
 +
 
 +
print( matrix4_result.GetRow(0)[0] == -1 ) # true
 +
print( matrix4_result.GetRow(0)[1] == -2 ) # true
 +
print( matrix4_result.GetRow(0)[2] == -3 ) # true
 +
print( matrix4_result.GetRow(0)[3] == -4 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
Get the matrix element for the specified row.
 
====Parameters====
 
<div style="margin-left: 2em;">
 
  
'''nRow''' [IN] Index of the row in the matrix.
+
=== == ===
</div>
+
 
====Returns====
+
The "equal to" operator. Performs a one-by-one comparison of the matrix array.
<div style="margin-left: 2em;">The row vector of the matrix - RLPy.RVector4
+
 
</div>
+
See Also: [[#!=|!=]]
-----
+
 
===GetSR===
+
<syntaxhighlight lang="python" line='line'>
<syntaxhighlight lang="Python">
+
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
RLPy.RMatrix4.GetSR ( self )
+
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
matrix4_b = RLPy.RMatrix4( 1, 2, 3, 4,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
 
 +
print( matrix4_a == matrix4_b ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
Get scale and rotation part of the matrix.
+
 
====Returns====
+
=== != ===
<div style="margin-left: 2em;">Return a 3x3 matrix - RLPy.RMatrix3
+
 
</div>
+
The "not equal to" operator. Performs a one-by-one comparison of the matrix array.
-----
+
 
===GetTranslate===
+
See Also: [[#==|==]]
<syntaxhighlight lang="Python">
+
 
RLPy.RMatrix4.GetTranslate ( self )
+
<syntaxhighlight lang="python" line='line'>
 +
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
matrix4_b = RLPy.RMatrix4( 2, 2, 2, 2,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
 
 +
print( matrix4_a != matrix4_b ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
Get translate of the matrix.
+
 
====Returns====
+
=== > ===
<div style="margin-left: 2em;">Return a translate vector - RLPy.RVector3
+
 
</div>
+
The "greater than" operator.  Performs a one-by-one comparison of the matrix array.
-----
+
 
===InfNorm===
+
See Also: [[#>=|>=]]
<syntaxhighlight lang="Python">
+
 
RLPy.RMatrix4.InfNorm ( self )
+
<syntaxhighlight lang="python" line='line'>
 +
matrix4_a = RLPy.RMatrix4( 1, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
matrix4_b = RLPy.RMatrix4( 2, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
 
 +
print( matrix4_b > matrix4_a ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
InfNorm of the matrix.
+
 
====Returns====
+
=== >= ===
<div style="margin-left: 2em;">Return InfNorm - float
+
 
</div>
+
The "greater than or equal to" operator. Performs a one-by-one comparison of the matrix array.
-----
+
 
===Inverse===
+
See Also: [[#>|>]]
<syntaxhighlight lang="Python">
+
 
RLPy.RMatrix4.Inverse ( self )
+
<syntaxhighlight lang="python" line='line'>
 +
matrix4_a = RLPy.RMatrix4( 1, 1, 1, 4,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
matrix4_b = RLPy.RMatrix4( 1, 1, 1, 8,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
 
 +
print( matrix4_b >= matrix4_a ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
Inverse of the matrix.
+
 
====Returns====
+
=== < ===
<div style="margin-left: 2em;">A new matrix containing this matrix's inverse - RLPy.RMatrix4
+
 
</div>
+
The "less than" operator. Performs a one-by-one comparison of the matrix array.
-----
+
 
===InverseTranspose===
+
See Also: [[#<=|<=]]
<syntaxhighlight lang="Python">
+
 
RLPy.RMatrix4.InverseTranspose ( self )
+
<syntaxhighlight lang="python" line='line'>
 +
matrix4_a = RLPy.RMatrix4( 2, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
matrix4_b = RLPy.RMatrix4( 3, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
 
 +
print( matrix4_a < matrix4_b ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
Transpose of inverse.
+
 
====Returns====
+
=== <= ===
<div style="margin-left: 2em;">A new matrix - RLPy.RMatrix4
+
 
</div>
+
The "less than" operator. Performs a one-by-one comparison of the matrix array.
-----
+
 
===M===
+
See Also: [[#<|<]]
<syntaxhighlight lang="Python">
+
 
RLPy.RMatrix4.M ( self, args )
+
<syntaxhighlight lang="python" line='line'>
 +
matrix4_a = RLPy.RMatrix4( 2, 2, 1, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
matrix4_b = RLPy.RMatrix4( 2, 2, 5, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
 
 +
print( matrix4_a <= matrix4_b ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
Get the matrix element for the specified row and column.
 
====Parameters====
 
<div style="margin-left: 2em;">
 
  
'''nRow''' [IN] Index of the row in the matrix - int
+
=== += ===
  
'''nCol''' [IN] Index of the column in the matrix - int
+
The "addition assignment" operator.
</div>
+
 
====Returns====
+
See Also: [[#+|+]]
<div style="margin-left: 2em;">The matrix element specified by row and col - float
+
 
</div>
+
<syntaxhighlight lang="python" line='line'>
-----
+
matrix4 =  RLPy.RMatrix4( 1, 2, 3, 4,
===MakeIdentity===
+
                          0, 0, 0, 0,
<syntaxhighlight lang="Python">
+
                          0, 0, 0, 0,
RLPy.RMatrix4.MakeIdentity ( self )
+
                          0, 0, 0, 0 )
 +
matrix4 += RLPy.RMatrix4( 2, 2, 2, 2,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
 
 +
print( matrix4.GetRow(0)[0] == 1+2 ) # true
 +
print( matrix4.GetRow(0)[1] == 2+2 ) # true
 +
print( matrix4.GetRow(0)[2] == 3+2 ) # true
 +
print( matrix4.GetRow(0)[3] == 4+2 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
Sets the matrix to the identity.
+
 
====Returns====
+
=== -= ===
<div style="margin-left: 2em;">This object - RLPy.RMatrix4
+
 
</div>
+
The "subtraction assignment" operator.
-----
+
 
===MaxColumn===
+
See Also: [[#-|-]]
<syntaxhighlight lang="Python">
+
 
RLPy.RMatrix4.MaxColumn ( self )
+
<syntaxhighlight lang="python" line='line'>
 +
matrix4 =  RLPy.RMatrix4( 1, 2, 3, 4,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
matrix4 -= RLPy.RMatrix4( 2, 2, 2, 2,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0,
 +
                          0, 0, 0, 0 )
 +
 
 +
print( matrix4.GetRow(0)[0] == 1-2 ) # true
 +
print( matrix4.GetRow(0)[1] == 2-2 ) # true
 +
print( matrix4.GetRow(0)[2] == 3-2 ) # true
 +
print( matrix4.GetRow(0)[3] == 4-2 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
Get maximum value of the column index in the matrix.
+
 
====Returns====
+
=== *= ===
<div style="margin-left: 2em;">Return index of column of M containing maximum abs entry, or -1 if M = 0 - int
+
 
</div>
+
The "multiplication assignment" operator. For the calculation method, refer to the '''*''' operator.
-----
+
 
===MaxRow===
+
See Also: [[#*|*]]
<syntaxhighlight lang="Python">
+
 
RLPy.RMatrix4.MaxRow ( self )
+
<syntaxhighlight lang="python" line='line'>
 +
matrix4 = RLPy.RMatrix4( 1, 2, 3, 4,
 +
                        0, 0, 0, 0,
 +
                        0, 0, 0, 0,
 +
                        0, 0, 0, 0 )
 +
matrix4 *= 2
 +
 
 +
print( matrix4.GetRow(0)[0] == 1*2 ) # true
 +
print( matrix4.GetRow(0)[1] == 2*2 ) # true
 +
print( matrix4.GetRow(0)[2] == 3*2 ) # true
 +
print( matrix4.GetRow(0)[3] == 4*2 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
Get maximum value of the row index in the matrix.
+
 
====Returns====
+
=== /= ===
<div style="margin-left: 2em;">Return index of row of M containing maximum abs entry, or -1 if M = 0 - int
+
 
</div>
+
The "division assignment" operator. For the calculation method, refer to the '''/''' operator.
-----
+
 
===OneNorm===
+
See Also: [[#/|/]]
<syntaxhighlight lang="Python">
+
 
RLPy.RMatrix4.OneNorm ( self )
+
<syntaxhighlight lang="python" line='line'>
 +
matrix4 = RLPy.RMatrix4( 1, 2, 3, 4,
 +
                        0, 0, 0, 0,
 +
                        0, 0, 0, 0,
 +
                        0, 0, 0, 0 )
 +
matrix4 /= 2
 +
 
 +
print( matrix4.GetRow(0)[0] == 1/2 ) # true
 +
print( matrix4.GetRow(0)[1] == 2/2 ) # true
 +
print( matrix4.GetRow(0)[2] == 3/2 ) # true
 +
print( matrix4.GetRow(0)[3] == 4/2 ) # true
 
</syntaxhighlight>
 
</syntaxhighlight>
Norm of the matrix.
+
 
====Returns====
+
== Member Functions ==
<div style="margin-left: 2em;">Return Norm - float
+
 
</div>
+
=== MakeIdentity (self) ===
-----
+
 
===RotateAxisAngle===
+
This function can be used to initialize the 3x3 matrix.  It is equivalent to setting the matrix to:
<syntaxhighlight lang="Python">
+
 
RLPy.RMatrix4.RotateAxisAngle ( self, rkAxis, fAngle )
+
[1  0  0  0]
 +
[0  1  0  0]
 +
[0  0  1  0]
 +
[0  0  0  1]
 +
 
 +
==== Returns ====
 +
:This object - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4 = RLPy.RMatrix4()
 +
matrix4.MakeIdentity()
 
</syntaxhighlight>
 
</syntaxhighlight>
Rotation matrix from axis angle.
 
====Parameters====
 
<div style="margin-left: 2em;">
 
  
'''rkAxis''' [IN] axis vector - RLPy.RVector3
+
=== M (self, args) ===
  
'''fAngle''' [IN] angle in radians - float
+
Get the value of an element in a 4x4 matrix by row and column index.
</div>
+
 
====Returns====
+
==== Parameters ====
<div style="margin-left: 2em;">Return a new matrix from specified axis angle - RLPy.RMatrix4
+
:'''nRow''' [IN] Index of the row in the matrix - int
</div>
+
:'''nCol''' [IN] Index of the column in the matrix - int
-----
+
 
===RotationX===
+
==== Returns ====
<syntaxhighlight lang="Python">
+
:The matrix element specified by row and col - float
RLPy.RMatrix4.RotationX ( self, fAngle )
+
 
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4 = RLPy.RMatrix4()
 +
matrix4.MakeIdentity()
 +
 
 +
print(matrix4.M(0,0)) #
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
=== E (self, args) ===
 +
 +
Get the value of an element in a 3x3 matrix by index number (from 0 to 15);
 +
 +
==== Parameters ====
 +
:'''nRow''' [IN] Index of the matrix.
 +
 +
==== Returns ====
 +
:The matrix element specified by index - float
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4 = RLPy.RMatrix4()
 +
matrix4.MakeIdentity()
 +
 +
print(matrix4.E(0)) #
 +
</syntaxhighlight>
 +
 +
=== GetRow (self, nR) ===
 +
 +
Retreive a row inside a 4x4 matrix.
 +
 +
==== Parameters ====
 +
:'''nRow''' [IN] Index of the row in the matrix.
 +
 +
==== Returns ====
 +
:The row vector of the matrix - [[IC_Python_API:RLPy_RVector4|RVector4]]
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4 = RLPy.RMatrix4()
 +
matrix4.MakeIdentity()
 +
row0 = matrix4.GetRow(0)
 +
 +
print(row0[0])
 +
print(row0[1])
 +
print(row0[2])
 +
print(row0[3])
 +
</syntaxhighlight>
 +
 +
=== GetColumn (self, nC) ===
 +
 +
Retrieve a column inside a 4x4 matrix.
 +
 +
==== Parameters ====
 +
:'''nRow''' [IN] Index of the column in the matrix.
 +
 +
==== Returns ====
 +
:The column vector of the matrix - [[IC_Python_API:RLPy_RVector4|RVector4]]
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4 = RLPy.RMatrix4()
 +
matrix4.MakeIdentity()
 +
col0 = matrix4.GetColumn(0)
 +
 +
print(col0[0])
 +
print(col0[1])
 +
print(col0[2])
 +
print(col0[3])
 +
</syntaxhighlight>
 +
 +
=== Transpose (self) ===
 +
 +
Obtain the transposed matrix by transposing the current m * n matrix into an n * m matrix by row-column swapping.
 +
 +
==== Returns ====
 +
:A new matrix containing this matrix's transpose - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4_orgin = RLPy.RMatrix4(  1,  2,  3,  4,
 +
                                5,  6,  7,  8,
 +
                                9, 10, 11, 12,
 +
                              13, 14, 15, 16 )
 +
matrix4_transpose = matrix4_orgin.Transpose()
 +
row0 = matrix4_orgin.GetRow(0)
 +
col0 = matrix4_transpose.GetColumn(0)
 +
 +
print(row0[0] == col0[0])
 +
print(row0[1] == col0[1])
 +
print(row0[2] == col0[2])
 +
print(row0[3] == col0[3])
 +
</syntaxhighlight>
 +
 +
=== TransposeTimes (self, mM) ===
 +
 +
Multiply a transposed version of a 4x4 matrix with itself.
 +
 +
==== Parameters ====
 +
:'''mM''' [IN] the matrix - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 +
==== Returns ====
 +
:A new matrix. (this^T * mM) - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4_orgin = RLPy.RMatrix4(  1,  2,  3,  4,
 +
                                5,  6,  7,  8,
 +
                                9, 10, 11, 12,
 +
                              13, 14, 15, 16 )
 +
matrix4_transpose_value = RLPy.RMatrix4( 2, 0, 0, 0,
 +
                                        0, 2, 0, 0,
 +
                                        0, 0, 2, 0,
 +
                                        0, 0, 0, 2 )
 +
matrix4_transpose_times = matrix4_orgin.TransposeTimes(matrix4_transpose_value)
 +
row0 = matrix4_orgin.GetRow(0)
 +
col0 = matrix4_transpose_times.GetColumn(0)
 +
 +
print(row0[0]*2 == col0[0])
 +
print(row0[1]*2 == col0[1])
 +
print(row0[2]*2 == col0[2])
 +
print(row0[3]*2 == col0[3])
 +
</syntaxhighlight>
 +
 +
=== TimesTranspose (self, mM) ===
 +
 +
Multiply this 4x4 matrix with a transposed version of itself.
 +
 +
==== Parameters ====
 +
:'''mM''' [IN] the matrix - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 +
==== Returns ====
 +
:A new matrix. (this * M^T) - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4_orgin = RLPy.RMatrix4(  1,  2,  3,  4,
 +
                                5,  6,  7,  8,
 +
                                9, 10, 11, 12,
 +
                              13, 14, 15, 16 )
 +
matrix4_transpose_value = RLPy.RMatrix4( 3, 0, 0, 0,
 +
                                        0, 3, 0, 0,
 +
                                        0, 0, 3, 0,
 +
                                        0, 0, 0, 3 )
 +
matrix4_times_transpose = matrix4_orgin.TimesTranspose(matrix4_transpose_value)
 +
row0 = matrix4_orgin.GetColumn(0)
 +
col0 = matrix4_times_transpose.GetColumn(0)
 +
 +
print(row0[0]*3 == col0[0])
 +
print(row0[1]*3 == col0[1])
 +
print(row0[2]*3 == col0[2])
 +
print(row0[3]*3 == col0[3])
 +
</syntaxhighlight>
 +
 +
=== Inverse (self) ===
 +
 +
Obtain the inverse (reciprocal) of this 4x4 matrix (A^-1).
 +
 +
==== Returns ====
 +
:A new matrix containing this matrix's inverse - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 +
                              1, 1,-1,-2,
 +
                              1,-1,-1, 2,
 +
                              1,-2, 1,-1 )
 +
matrix4_inverse = matrix4_value.Inverse()
 +
row0_inverse = matrix4_inverse.GetRow(0)
 +
 +
print(row0_inverse[0])
 +
print(row0_inverse[1])
 +
print(row0_inverse[2])
 +
print(row0_inverse[3])
 +
</syntaxhighlight>
 +
 +
=== Adjoint (self) ===
 +
 +
Adjugate this 4x4 matrix.
 +
 +
==== Returns ====
 +
:A new matrix containing this matrix's adjoint - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 +
                              1, 1,-1,-2,
 +
                              1,-1,-1, 2,
 +
                              1,-2, 1,-1 )
 +
matrix4_Adjoint = matrix4_value.Adjoint()
 +
row0_Adjoint = matrix4_Adjoint.GetRow(0)
 +
 +
print(row0_Adjoint[0])
 +
print(row0_Adjoint[1])
 +
print(row0_Adjoint[2])
 +
print(row0_Adjoint[3])
 +
</syntaxhighlight>
 +
 +
=== AdjointTranspose (self) ===
 +
 +
Adjugate and transpose this 4x4 matrix.
 +
 +
==== Returns ====
 +
:A new matrix - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 +
                              1, 1,-1,-2,
 +
                              1,-1,-1, 2,
 +
                              1,-2, 1,-1 )
 +
matrix4_Adjoint_transpose = matrix4_value.AdjointTranspose()
 +
col0_Adjoint_transpose = matrix4_Adjoint_transpose.GetColumn(0)
 +
 +
print(col0_Adjoint_transpose[0] == row0_Adjoint[0])
 +
print(col0_Adjoint_transpose[1] == row0_Adjoint[1])
 +
print(col0_Adjoint_transpose[2] == row0_Adjoint[2])
 +
print(col0_Adjoint_transpose[3] == row0_Adjoint[3])
 +
</syntaxhighlight>
 +
 +
=== InverseTranspose (self) ===
 +
 +
Invert and transpose this 4x4 matrix.
 +
 +
==== Returns ====
 +
:A new matrix - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 +
                              1, 1,-1,-2,
 +
                              1,-1,-1, 2,
 +
                              1,-2, 1,-1 )
 +
matrix4_inverse_transpose = matrix4_value.InverseTranspose()
 +
col0_inverse_transpose = matrix4_inverse_transpose.GetColumn(0)
 +
 +
print(col0_inverse_transpose[0] == row0_inverse[0])
 +
print(col0_inverse_transpose[1] == row0_inverse[1])
 +
print(col0_inverse_transpose[2] == row0_inverse[2])
 +
print(col0_inverse_transpose[3] == row0_inverse[3])
 +
</syntaxhighlight>
 +
 +
=== Determinant (self) ===
 +
 +
Obtain the scalar value for this 4x4 matrix (|A|).
 +
 +
[[File:Rlpy_rmatrix4_determinant.jpg]]
 +
 +
==== Returns ====
 +
:The determinant of the matrix - float
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 +
                              1, 1,-1,-2,
 +
                              1,-1,-1, 2,
 +
                              1,-2, 1,-1 )
 +
print(matrix4_value.Determinant())
 +
</syntaxhighlight>
 +
 +
=== MaxColumn (self) ===
 +
 +
Find the maximum absolute value within this 4x4 matrix, and return the column in which the value is located.  If all of the elements within the 4x4 matrix are 0 then return -1.
 +
 +
==== Returns ====
 +
:Return index of column of M containing maximum abs entry, or -1 if M = 0 - int
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4_column_value = RLPy.RMatrix4( 1, 2, 3,-5,
 +
                                      0, 0, 0, 0,
 +
                                      0, 0, 0, 0,
 +
                                      0, 0, 0, 0 )
 +
print(matrix4_column_value.MaxColumn()) # column:3 -> abs(-5)
 +
</syntaxhighlight>
 +
 +
=== MaxRow (self) ===
 +
 +
Find the maximum absolute value within this 4x4 matrix, and return the row in which the value is located.  If all of the elements within the 4x4 matrix are 0 then return -1.
 +
 +
==== Returns ====
 +
:Return index of row of M containing maximum abs entry, or -1 if M = 0 - int
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4_row_value = RLPy.RMatrix4( 1, 0, 0, 0,
 +
                                  2, 0, 0, 0,
 +
                                  3, 0, 0, 0,
 +
                                  -5, 0, 0, 0 )
 +
print(matrix4_value.MaxRow()) # Row:3 -> abs(-5)
 +
</syntaxhighlight>
 +
 +
=== OneNorm (self) ===
 +
 +
Return the sum of the column elements that contain the largest absolute values.
 +
 +
==== Returns ====
 +
:Return Norm - float
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4_row_value = RLPy.RMatrix4( 1, 0, 0, 0,
 +
                                  2, 0, 0, 0,
 +
                                  3, 0, 0, 0,
 +
                                  -5, 0, 0, 0 )
 +
print(matrix4_row_value.OneNorm()) # 11 -> 1+2+abs(-5)
 +
</syntaxhighlight>
 +
 +
=== InfNorm (self) ===
 +
 +
Return the sum of the row elements that contain the largest absolute values.
 +
 +
==== Returns ====
 +
:Return InfNorm - float
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4_column_value = RLPy.RMatrix4( 1, 2, 3,-5,
 +
                                      0, 0, 0, 0,
 +
                                      0, 0, 0, 0,
 +
                                      0, 0, 0, 0 )
 +
print(matrix4_column_value.InfNorm()) # 11 -> 1+2+abs(-5)
 +
</syntaxhighlight>
 +
 +
=== FromRTS (self, kRotate, kTranslate, kScale) ===
 +
 +
Apply rotate, translate, and scale data to a 4x4 matrix.
 +
 +
==== Parameters ====
 +
:'''kRotate  ''' [IN] Rotate Matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
 +
:'''kTranslate''' [IN] Translate vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
 +
:'''kScale  ''' [IN] Scale vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
 +
 +
==== Returns ====
 +
:Return a new matrix from RTS - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
rotate = RLPy.RMatrix3( 1, 0, 0,
 +
                        0, 1, 0,
 +
                        0, 0, 1 )
 +
translate = RLPy.RVector3( 1, 0, 0 )
 +
scale = RLPy.RVector3( 2, 2, 2 )
 +
matrix4_result =  RLPy.RMatrix4().FromRTS( rotate, translate, scale )
 +
row0 = matrix4_result.GetRow(0)
 +
 +
print(row0[0])
 +
print(row0[1])
 +
print(row0[2])
 +
print(row0[3])
 +
</syntaxhighlight>
 +
 +
=== GetSimpleRTS (self, rkRotate, rkTranslate, rkScale) ===
 +
 +
Retrieve rotation, translation, and scale data from this 4x4 matrix.
 +
 +
==== Parameters ====
 +
:'''rkRotate'''  [IN] Angle of x-axis in radians - float
 +
:'''rkTranslate''' [IN] Angle of y-axis in radians - float
 +
:'''rkScale  ''' [IN] Angle of z-axis in radians - float
 +
 +
==== Returns ====
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 +
                              1, 1,-1,-2,
 +
                              1,-1,-1, 2,
 +
                              1,-2, 1,-1 )
 +
rotate = RLPy.RMatrix3()
 +
translate = RLPy.RVector3()
 +
scale = RLPy.RVector3()
 +
matrix4_value.GetSimpleRTS( rotate, translate, scale )
 +
row0 = rotate.GetRow(0)
 +
 +
print(row0[0])
 +
print(row0[1])
 +
print(row0[2])
 +
 +
print(translate[0])
 +
print(translate[1])
 +
print(translate[2])
 +
 +
print(scale[0])
 +
print(scale[1])
 +
print(scale[2])       
 +
</syntaxhighlight>
 +
 +
=== GetSimpleRotate (self, rkRotate) ===
 +
 +
Retrieve rotation data from this 4x4 matrix.
 +
 +
==== Parameters ====
 +
:'''rkRotate''' [IN] Rotation Matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
 +
 +
==== Returns ====
 +
:3x3 matrix rotation data of this 4x4 matrix.
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 +
                              1, 1,-1,-2,
 +
                              1,-1,-1, 2,
 +
                              1,-2, 1,-1
 +
rotate = RLPy.RMatrix3()
 +
matrix4_value.GetSimpleRotate( rotate )
 +
row0 = rotate.GetRow(0)
 +
 +
print(row0[0])
 +
print(row0[1])
 +
print(row0[2])
 +
</syntaxhighlight>
 +
 +
=== SetTranslateZero (self) ===
 +
 +
Set the translation data in this 4x4 matrix to 0.
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 +
                              1, 1,-1,-2,
 +
                              1,-1,-1, 2,
 +
                              1,-2, 1,-1
 +
matrix4_value.SetTranslateZero()
 +
row3 = matrix4_value.GetRow(3)
 +
 +
print(row3[0] == 0)
 +
print(row3[1] == 0)
 +
print(row3[2] == 0)
 +
</syntaxhighlight>
 +
 +
=== RotationX (self, fAngle) ===
 +
 
Rotation matrix for rotations around x-axis.
 
Rotation matrix for rotations around x-axis.
====Parameters====
 
<div style="margin-left: 2em;">
 
  
'''fAngle''' [IN] angle in radians - float
+
==== Parameters ====
</div>
+
:'''fAngle''' [IN] angle in radians - float
====Returns====
+
 
<div style="margin-left: 2em;">Return a new matrix of for rotations around x-axis - RLPy.RMatrix4
+
==== Returns ====
</div>
+
:Return a new matrix of for rotations around x-axis - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
-----
+
 
===RotationY===
+
<syntaxhighlight lang="python" line='line'>
<syntaxhighlight lang="Python">
+
matrix4_orgin = RLPy.RMatrix4()
RLPy.RMatrix4.RotationY ( self, fAngle )
+
matrix4_orgin.MakeIdentity()
 +
matrix4_orgin.RotationX( 90 * RLPy.RMath.CONST_DEG_TO_RAD )
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
=== RotationY (self, fAngle) ===
 +
 
Rotation matrix for rotations around y-axis.
 
Rotation matrix for rotations around y-axis.
====Parameters====
 
<div style="margin-left: 2em;">
 
  
'''fAngle''' [IN] angle in radians - float
+
==== Parameters ====
</div>
+
:'''fAngle''' [IN] angle in radians - float
====Returns====
+
 
<div style="margin-left: 2em;">Return a new matrix of for rotations around y-axis - RLPy.RMatrix4
+
==== Returns ====
</div>
+
:Return a new matrix of for rotations around y-axis - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
-----
+
 
===RotationZ===
+
<syntaxhighlight lang="python" line='line'>
<syntaxhighlight lang="Python">
+
matrix4_orgin = RLPy.RMatrix4()
RLPy.RMatrix4.RotationZ ( self, fAngle )
+
matrix4_orgin.MakeIdentity()
 +
matrix4_orgin.RotationY( 90 * RLPy.RMath.CONST_DEG_TO_RAD )
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
=== RotationZ (self, fAngle) ===
 +
 
Rotation matrix for rotations around z-axis.
 
Rotation matrix for rotations around z-axis.
====Parameters====
 
<div style="margin-left: 2em;">
 
  
'''fAngle''' [IN] angle in radians - float
+
==== Parameters ====
</div>
+
:'''fAngle''' [IN] angle in radians - float
====Returns====
+
 
<div style="margin-left: 2em;">Return a new matrix of for rotations around z-axis - RLPy.RMatrix4
+
==== Returns ====
</div>
+
:Return a new matrix of for rotations around z-axis - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
-----
+
 
===SetSR===
+
<syntaxhighlight lang="python" line='line'>
<syntaxhighlight lang="Python">
+
matrix4_orgin = RLPy.RMatrix4()
RLPy.RMatrix4.SetSR ( self, mSR )
+
matrix4_orgin.MakeIdentity()
 +
matrix4_orgin.RotationZ( 90 * RLPy.RMath.CONST_DEG_TO_RAD )
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
=== RotateAxisAngle (self, rkAxis, fAngle) ===
 +
 +
Rotation matrix from axis angle.
 +
 +
==== Parameters ====
 +
:'''rkAxis''' [IN] axis vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
 +
:'''fAngle''' [IN] angle in radians - float
 +
 +
==== Returns ====
 +
:Return a new matrix from specified axis angle - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 +
                              1, 1,-1,-2,
 +
                              1,-1,-1, 2,
 +
                              1,-2, 1,-1
 +
x_axis_vector = RLPy.RVector3( 1, 0, 0 )  # axis = "X"
 +
y_axis_vector = RLPy.RVector3( 0, 1, 0 )  # axis = "Y"
 +
z_axis_vector = RLPy.RVector3( 0, 0, 1 )  # axis = "Z"   
 +
matrix4_value.RotateAxisAngle( x_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
 +
matrix4_value.RotateAxisAngle( y_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
 +
matrix4_value.RotateAxisAngle( z_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
 +
</syntaxhighlight>
 +
 +
=== FromEulerAngle (self, Oreder, rx, ry, rz) ===
 +
 +
Convert Euler angle to a 4x4 matrix according to a rotation axis order.
 +
 +
==== Parameters ====
 +
:'''Oreder''' [IN] Euler order - RLPY.EEulerOrder
 +
:*EEulerOrder_XYZ = _RLPy.EEulerOrder_XYZ
 +
:*EEulerOrder_ZYX = _RLPy.EEulerOrder_ZYX
 +
:*EEulerOrder_XZY = _RLPy.EEulerOrder_XZY
 +
:*EEulerOrder_YZX = _RLPy.EEulerOrder_YZX
 +
:*EEulerOrder_YXZ = _RLPy.EEulerOrder_YXZ
 +
:*EEulerOrder_ZXY = _RLPy.EEulerOrder_ZXY
 +
:'''rx''' [IN] Angle of x-axis in radians - float
 +
:'''ry''' [IN] Angle of y-axis in radians - float
 +
:'''rz''' [IN] Angle of z-axis in radians - float
 +
 +
==== Returns ====
 +
:Return a new matrix from specified axis angle - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
euler_angle_x = 90 * RLPy.RMath.CONST_DEG_TO_RAD
 +
euler_angle_y = 0
 +
euler_angle_z = 0
 +
matrix4_result = RLPy.RMatrix4().FromEulerAngle( RLPy.EEulerOrder_XYZ, euler_angle_x, euler_angle_y, euler_angle_z)
 +
row0 = matrix4_result[0].GetRow(0)
 +
 +
print(row0[0])
 +
print(row0[1])
 +
print(row0[2])
 +
print(row0[3])
 +
</syntaxhighlight>
 +
 +
=== SetSR (self, mSR) ===
 +
 
Set scale and rotation part of the matrix.
 
Set scale and rotation part of the matrix.
====Parameters====
 
<div style="margin-left: 2em;">
 
  
'''mSR''' [IN] 3x3 matrix - RLPy.RMatrix3
+
==== Parameters ====
</div>
+
:'''mSR''' [IN] 3x3 matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
====Returns====
+
 
<div style="margin-left: 2em;">Return a new 4x4 matrix - RLPy.RMatrix4
+
==== Returns ====
</div>
+
:Return a new 4x4 matrix - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
-----
+
 
===SetTranslate===
+
<syntaxhighlight lang="python" line='line'>
<syntaxhighlight lang="Python">
+
matrix4_orgin = RLPy.RMatrix4()
RLPy.RMatrix4.SetTranslate ( self, vTranslate )
+
matrix4_orgin.MakeIdentity()
 +
matrix3_rotate_value = RLPy.RMatrix3( 1, 0, 0,
 +
                                      0, 1, 0,
 +
                                      0, 0, 1 )
 +
matrix4_orgin.SetSR(matrix3_rotate_value)
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
=== GetSR (self) ===
 +
 +
Get scale and rotation part of the matrix.
 +
 +
==== Returns ====
 +
:Return a 3x3 matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
 +
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 +
                              1, 1,-1,-2,
 +
                              1,-1,-1, 2,
 +
                              1,-2, 1,-1
 +
result = matrix4_value.GetSR()
 +
row0 = result.GetRow(0)
 +
print(row0[0])
 +
print(row0[1])
 +
print(row0[2])
 +
</syntaxhighlight>
 +
 +
=== SetTranslate (self, vTranslate) ===
 +
 
Set translate of the matrix.
 
Set translate of the matrix.
====Parameters====
 
<div style="margin-left: 2em;">
 
  
'''vTranslate''' [IN] Translate vector - RLPy.RVector3
+
==== Parameters ====
</div>
+
:'''vTranslate''' [IN] Translate vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
====Returns====
+
 
<div style="margin-left: 2em;">Return a new matrix with the specified translation - RLPy.RMatrix4
+
==== Returns ====
</div>
+
:New matrix with the specified translation - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
-----
+
 
===TimesTranspose===
+
<syntaxhighlight lang="python" line='line'>
<syntaxhighlight lang="Python">
+
matrix4_orgin = RLPy.RMatrix4()
RLPy.RMatrix4.TimesTranspose ( self, mM )
+
matrix4_orgin.MakeIdentity()
 +
matrix4_orgin.SetTranslate(RLPy.RVector3( 1, 2, 3 ) )
 
</syntaxhighlight>
 
</syntaxhighlight>
Multiplies of the transpose of the matrix.
 
====Parameters====
 
<div style="margin-left: 2em;">
 
  
'''mM''' [IN] the matrix - RLPy.RMatrix4
+
=== GetTranslate (self) ===
</div>
+
 
====Returns====
+
Get translate of the matrix.
<div style="margin-left: 2em;">A new matrix. (this * M^T) - RLPy.RMatrix4
+
 
</div>
+
==== Returns ====
-----
+
:Return a translate vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
===Transpose===
+
 
<syntaxhighlight lang="Python">
+
<syntaxhighlight lang="python" line='line'>
RLPy.RMatrix4.Transpose ( self )
+
matrix4_orgin = RLPy.RMatrix4()
 +
matrix4_orgin.MakeIdentity()
 +
matrix4_orgin.SetTranslate(RLPy.RVector3( 1, 2, 3 ) )
 +
result = matrix4_orgin.GetTranslate()
 +
 
 +
print(result[0] == 1)
 +
print(result[1] == 2)
 +
print(result[2] == 3)
 
</syntaxhighlight>
 
</syntaxhighlight>
Transpose of the matrix.
+
 
====Returns====
+
=== AccuScale (self, rkScale) ===
<div style="margin-left: 2em;">A new matrix containing this matrix's transpose - RLPy.RMatrix4
+
 
</div>
+
Accumulate this 4x4 matrix with scale vector.
-----
+
 
===TransposeTimes===
+
==== Parameters ====
<syntaxhighlight lang="Python">
+
:'''rkScale''' [IN] Scale vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
RLPy.RMatrix4.TransposeTimes ( self, mM )
+
 
 +
==== Returns ====
 +
:Accumulate of this 4x4 matrix with scale vector - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4_orgin = RLPy.RMatrix4()
 +
matrix4_orgin.MakeIdentity()
 +
matrix4_orgin.AccuScale(RLPy.RVector3( 2, 2, 2 ) )
 +
matrix4_orgin.AccuScale(RLPy.RVector3( 3, 3, 3 ) )
 +
result = matrix4_orgin.GetSR()
 +
row0 = result.GetRow(0)
 +
print(row0[0] == 2*3)
 +
row1 = result.GetRow(1)
 +
print(row1[1] == 2*3)
 +
row2 = result.GetRow(2)
 +
print(row2[2] == 2*3)
 
</syntaxhighlight>
 
</syntaxhighlight>
Multiplies of the transpose of the matrix.
 
====Parameters====
 
<div style="margin-left: 2em;">
 
  
'''mM''' [IN] the matrix - RLPy.RMatrix4
+
=== AccuRotate (self, rkRotate) ===
</div>
+
 
====Returns====
+
Accumulate this 4x4 matrix with rotation matrix.
<div style="margin-left: 2em;">A new matrix. (this^T * mM) - RLPy.RMatrix4
+
 
</div>
+
==== Parameters ====
 +
:'''rkRotate''' [IN] Rotation matrix - [[IC_Python_API:RLPy_RMatrix3|RMatrix3]]
 +
 
 +
==== Returns ====
 +
:Accumulate this 4x4 matrix and rotation matrix - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4_orgin = RLPy.RMatrix4()
 +
matrix4_orgin.MakeIdentity()
 +
matrix3_orgin = RLPy.RMatrix3()
 +
matrix3_orgin.FromAxisAngle( RLPy.RVector3( 0, 1, 0 ), 90 * RLPy.RMath.CONST_DEG_TO_RAD )
 +
matrix4_orgin.AccuRotate(matrix3_orgin)
 +
matrix4_orgin.AccuRotate(matrix3_orgin)
 +
rotate = RLPy.RMatrix3()
 +
matrix4_orgin.GetSimpleRotate( rotate )
 +
row0 = rotate.GetRow(0)
 +
print(row0[0])
 +
print(row0[1])
 +
print(row0[2])
 +
</syntaxhighlight>
 +
 
 +
=== AccuTranslate (self, rkTranslate) ===
 +
 
 +
Accumulate this 4x4 matrix with translate vector.
 +
 
 +
==== Parameters ====
 +
:'''rkTranslate''' [IN] Translate vector - [[IC_Python_API:RLPy_RVector3|RVector3]]
 +
 
 +
==== Returns ====
 +
:Accumulate of this 4x4 matrix and translation vector - [[IC_Python_API:RLPy_RMatrix4|RMatrix4]]
 +
 
 +
<syntaxhighlight lang="python" line='line'>
 +
matrix4_orgin = RLPy.RMatrix4()
 +
matrix4_orgin.MakeIdentity()
 +
matrix4_orgin.AccuTranslate(RLPy.RVector3( 1, 2, 3 ) )
 +
matrix4_orgin.AccuTranslate(RLPy.RVector3( 2, 2, 2 ) )
 +
row3 = matrix4_orgin.GetRow(3)
 +
print(row3[0] == 1+2)
 +
print(row3[1] == 2+2)
 +
print(row3[2] == 2+3)
 +
</syntaxhighlight>

Latest revision as of 23:48, 14 April 2020

Contents

Main article: Modules.
Last modified: 04/14/2020

Description

This class represent the transform data of RTransform. This class provides access to RLPy's internal 4x4 matrix operators and related functions.

Constructor & Destructor

__init__ ( self, M00 ,M01, M02, M03, M10, M11, M12, M13, M20, M21, M22, M23, M30, M31, M32, M33 )

The constructor. Initialize a new RMatrix4 with RMatrix4 Item Value.

Parameters

M00 [IN] initialization value - float
M01 [IN] initialization value - float
M02 [IN] initialization value - float
M03 [IN] initialization value - float
M10 [IN] initialization value - float
M11 [IN] initialization value - float
M12 [IN] initialization value - float
M13 [IN] initialization value - float
M20 [IN] initialization value - float
M21 [IN] initialization value - float
M22 [IN] initialization value - float
M23 [IN] initialization value - float
M30 [IN] initialization value - float
M31 [IN] initialization value - float
M32 [IN] initialization value - float
M33 [IN] initialization value - float

Returns

Returns the row vector of the matrix - RMatrix4
1 matrix4 = RLPy.RMatrix4( 1,   2,  3,  4,
2                          5,   6,  7,  8,
3                          9,  10, 11, 12,
4                          13, 14, 15, 16 )

__init__ ( self, Oreder, rx, ty, rz )

The constructor. Initialize a new RMatrix4 with Order and angle.

Parameters

Oreder [IN] Euler order - RLPy.Rotation_Order
rx [IN] Angle of x-axis in radians - float
ry [IN] Angle of y-axis in radians - float
rz [IN] Angle of z-axis in radians - float

Returns

Returns the row vector of the matrix - RMatrix4
1 euler_angle_x = 90 * RLPy.RMath.CONST_DEG_TO_RAD
2 euler_angle_y = 0
3 euler_angle_z = 0
4 matrix4 = RLPy.RMatrix4( RLPy.EEulerOrder_XYZ, euler_angle_x, euler_angle_y, euler_angle_z )

__init__ ( self, rkRotate )

The constructor. Initialize a new RMatrix4 with RMatrix3.

Parameters

rkRotate [IN] Rotation 3x3 matrix - RMatrix3

Returns

Returns the row vector of the matrix - RMatrix4
1 rotate = RLPy.RMatrix3( 1, 0, 0,
2                         0, 2, 0,
3                         0, 0, 3 )
4 matrix4 = RLPy.RMatrix4( rotate )

__init__ ( self, kRotate, kTranslate, kScale )

The constructor. Initialize a new RMatrix4 with RTS.

Parameters

rkRotate [IN] Rotation matrix - RMatrix3
rkTranslate [IN] Translate vector - RVector3
rkScale [IN] Scale vector - RVector3

Returns

Returns the row vector of the matrix - RMatrix4
1 rotate = RLPy.RMatrix3( 1, 0, 0,
2                         0, 2, 0,
3                         0, 0, 3 )
4 translate = RLPy.RVector3( 1,2,3 )
5 scale = RLPy.RVector3( 2,2,2 )
6 matrix4 = RLPy.RMatrix4( rotate, translate, scale )

__init__ ( self, args )

The constructor. Initialize a new 4x4 matrix object with another RMatrix4 object.

Parameters

args [IN] a 4x4 matrix object - RMatrix4

Returns

Returns the row vector of the matrix - RMatrix4
1 matrix4 = RLPy.RMatrix4( 1,   2,  3,  4,
2                          5,   6,  7,  8,
3                          9,  10, 11, 12,
4                          13, 14, 15, 16 )
5 matrix4_copy = RLPy.RMatrix4( matrix4 )
6 print( matrix4_copy == matrix4 ) # true

Operators

+

The "addition" operator.

See Also: +=

 1 matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
 2                            0, 0, 0, 0,
 3                            0, 0, 0, 0,
 4                            0, 0, 0, 0 )
 5 matrix4_b = RLPy.RMatrix4( 2, 2, 2, 2,
 6                            0, 0, 0, 0,
 7                            0, 0, 0, 0,
 8                            0, 0, 0, 0 )
 9 matrix4_result = matrix4_a + matrix4_b
10 
11 print( matrix4_result.GetRow(0)[0] == 1+2 ) # true
12 print( matrix4_result.GetRow(0)[1] == 2+2 ) # true
13 print( matrix4_result.GetRow(0)[2] == 3+2 ) # true
14 print( matrix4_result.GetRow(0)[3] == 4+2 ) # true

-

The "subtraction" operator.

See Also: -=

 1 matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
 2                            0, 0, 0, 0,
 3                            0, 0, 0, 0,
 4                            0, 0, 0, 0 )
 5 matrix4_b = RLPy.RMatrix4( 2, 2, 2, 2,
 6                            0, 0, 0, 0,
 7                            0, 0, 0, 0,
 8                            0, 0, 0, 0 )
 9 matrix4_result = matrix4_a - matrix4_b
10 
11 print( matrix4_result.GetRow(0)[0] == 1-2 ) # true
12 print( matrix4_result.GetRow(0)[1] == 2-2 ) # true
13 print( matrix4_result.GetRow(0)[2] == 3-2 ) # true
14 print( matrix4_result.GetRow(0)[3] == 4-2 ) # true

*

The "multiplication" operator.

See Also: *=

 1 matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
 2                            0, 0, 0, 0,
 3                            0, 0, 0, 0,
 4                            0, 0, 0, 0 )
 5 matrix4_b = RLPy.RMatrix4( 2, 0, 0, 0,
 6                            2, 0, 0, 0,
 7                            2, 0, 0, 0,
 8                            2, 0, 0, 0 )
 9 matrix4_result = matrix4_a * matrix4_b
10 
11 print( matrix4_result.GetRow(0)[0] == 1*2 + 2*2 + 3*2 + 4*2  ) # true

/

The "division" operator.

See Also: /=

 1 matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
 2                            0, 0, 0, 0,
 3                            0, 0, 0, 0,
 4                            0, 0, 0, 0 )
 5 matrix4_result = matrix4_a / 2
 6 
 7 print( matrix4_result.GetRow(0)[0] == 1/2 ) # true
 8 print( matrix4_result.GetRow(0)[1] == 2/2 ) # true
 9 print( matrix4_result.GetRow(0)[2] == 3/2 ) # true
10 print( matrix4_result.GetRow(0)[3] == 4/2 ) # true

-

The "unary minus" .

 1 matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
 2                            0, 0, 0, 0,
 3                            0, 0, 0, 0,
 4                            0, 0, 0, 0 )
 5 matrix4_result = -matrix4_a
 6 
 7 print( matrix4_result.GetRow(0)[0] == -1 ) # true
 8 print( matrix4_result.GetRow(0)[1] == -2 ) # true
 9 print( matrix4_result.GetRow(0)[2] == -3 ) # true
10 print( matrix4_result.GetRow(0)[3] == -4 ) # true

==

The "equal to" operator. Performs a one-by-one comparison of the matrix array.

See Also: !=

 1 matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
 2                            0, 0, 0, 0,
 3                            0, 0, 0, 0,
 4                            0, 0, 0, 0 )
 5 matrix4_b = RLPy.RMatrix4( 1, 2, 3, 4,
 6                            0, 0, 0, 0,
 7                            0, 0, 0, 0,
 8                            0, 0, 0, 0 )
 9 
10 print( matrix4_a == matrix4_b ) # true

!=

The "not equal to" operator. Performs a one-by-one comparison of the matrix array.

See Also: ==

 1 matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
 2                            0, 0, 0, 0,
 3                            0, 0, 0, 0,
 4                            0, 0, 0, 0 )
 5 matrix4_b = RLPy.RMatrix4( 2, 2, 2, 2,
 6                            0, 0, 0, 0,
 7                            0, 0, 0, 0,
 8                            0, 0, 0, 0 )
 9 
10 print( matrix4_a != matrix4_b ) # true

>

The "greater than" operator. Performs a one-by-one comparison of the matrix array.

See Also: >=

 1 matrix4_a = RLPy.RMatrix4( 1, 0, 0, 0,
 2                            0, 0, 0, 0,
 3                            0, 0, 0, 0,
 4                            0, 0, 0, 0 )
 5 matrix4_b = RLPy.RMatrix4( 2, 0, 0, 0,
 6                            0, 0, 0, 0,
 7                            0, 0, 0, 0,
 8                            0, 0, 0, 0 )
 9 
10 print( matrix4_b > matrix4_a ) # true

>=

The "greater than or equal to" operator. Performs a one-by-one comparison of the matrix array.

See Also: >

 1 matrix4_a = RLPy.RMatrix4( 1, 1, 1, 4,
 2                            0, 0, 0, 0,
 3                            0, 0, 0, 0,
 4                            0, 0, 0, 0 )
 5 matrix4_b = RLPy.RMatrix4( 1, 1, 1, 8,
 6                            0, 0, 0, 0,
 7                            0, 0, 0, 0,
 8                            0, 0, 0, 0 )
 9 
10 print( matrix4_b >= matrix4_a ) # true

<

The "less than" operator. Performs a one-by-one comparison of the matrix array.

See Also: <=

 1 matrix4_a = RLPy.RMatrix4( 2, 0, 0, 0,
 2                            0, 0, 0, 0,
 3                            0, 0, 0, 0,
 4                            0, 0, 0, 0 )
 5 matrix4_b = RLPy.RMatrix4( 3, 0, 0, 0,
 6                            0, 0, 0, 0,
 7                            0, 0, 0, 0,
 8                            0, 0, 0, 0 )
 9 
10 print( matrix4_a < matrix4_b ) # true

<=

The "less than" operator. Performs a one-by-one comparison of the matrix array.

See Also: <

 1 matrix4_a = RLPy.RMatrix4( 2, 2, 1, 0,
 2                            0, 0, 0, 0,
 3                            0, 0, 0, 0,
 4                            0, 0, 0, 0 )
 5 matrix4_b = RLPy.RMatrix4( 2, 2, 5, 0,
 6                            0, 0, 0, 0,
 7                            0, 0, 0, 0,
 8                            0, 0, 0, 0 )
 9 
10 print( matrix4_a <= matrix4_b ) # true

+=

The "addition assignment" operator.

See Also: +

 1 matrix4 =  RLPy.RMatrix4( 1, 2, 3, 4,
 2                           0, 0, 0, 0,
 3                           0, 0, 0, 0, 
 4                           0, 0, 0, 0 )
 5 matrix4 += RLPy.RMatrix4( 2, 2, 2, 2,
 6                           0, 0, 0, 0,
 7                           0, 0, 0, 0,
 8                           0, 0, 0, 0 )
 9 
10 print( matrix4.GetRow(0)[0] == 1+2 ) # true
11 print( matrix4.GetRow(0)[1] == 2+2 ) # true
12 print( matrix4.GetRow(0)[2] == 3+2 ) # true
13 print( matrix4.GetRow(0)[3] == 4+2 ) # true

-=

The "subtraction assignment" operator.

See Also: -

 1 matrix4 =  RLPy.RMatrix4( 1, 2, 3, 4,
 2                           0, 0, 0, 0,
 3                           0, 0, 0, 0,
 4                           0, 0, 0, 0 )
 5 matrix4 -= RLPy.RMatrix4( 2, 2, 2, 2,
 6                           0, 0, 0, 0,
 7                           0, 0, 0, 0,
 8                           0, 0, 0, 0 )
 9 
10 print( matrix4.GetRow(0)[0] == 1-2 ) # true
11 print( matrix4.GetRow(0)[1] == 2-2 ) # true
12 print( matrix4.GetRow(0)[2] == 3-2 ) # true
13 print( matrix4.GetRow(0)[3] == 4-2 ) # true

*=

The "multiplication assignment" operator. For the calculation method, refer to the * operator.

See Also: *

 1 matrix4 = RLPy.RMatrix4( 1, 2, 3, 4,
 2                          0, 0, 0, 0,
 3                          0, 0, 0, 0,
 4                          0, 0, 0, 0 )
 5 matrix4 *= 2
 6 
 7 print( matrix4.GetRow(0)[0] == 1*2 ) # true
 8 print( matrix4.GetRow(0)[1] == 2*2 ) # true
 9 print( matrix4.GetRow(0)[2] == 3*2 ) # true
10 print( matrix4.GetRow(0)[3] == 4*2 ) # true

/=

The "division assignment" operator. For the calculation method, refer to the / operator.

See Also: /

 1 matrix4 = RLPy.RMatrix4( 1, 2, 3, 4,
 2                          0, 0, 0, 0,
 3                          0, 0, 0, 0,
 4                          0, 0, 0, 0 )
 5 matrix4 /= 2
 6 
 7 print( matrix4.GetRow(0)[0] == 1/2 ) # true
 8 print( matrix4.GetRow(0)[1] == 2/2 ) # true
 9 print( matrix4.GetRow(0)[2] == 3/2 ) # true
10 print( matrix4.GetRow(0)[3] == 4/2 ) # true

Member Functions

MakeIdentity (self)

This function can be used to initialize the 3x3 matrix. It is equivalent to setting the matrix to:

[1  0  0  0]
[0  1  0  0]
[0  0  1  0]
[0  0  0  1]

Returns

This object - RMatrix4
1 matrix4 = RLPy.RMatrix4()
2 matrix4.MakeIdentity()

M (self, args)

Get the value of an element in a 4x4 matrix by row and column index.

Parameters

nRow [IN] Index of the row in the matrix - int
nCol [IN] Index of the column in the matrix - int

Returns

The matrix element specified by row and col - float
1 matrix4 = RLPy.RMatrix4()
2 matrix4.MakeIdentity()
3 
4 print(matrix4.M(0,0)) #

E (self, args)

Get the value of an element in a 3x3 matrix by index number (from 0 to 15);

Parameters

nRow [IN] Index of the matrix.

Returns

The matrix element specified by index - float
1 matrix4 = RLPy.RMatrix4()
2 matrix4.MakeIdentity()
3 
4 print(matrix4.E(0)) #

GetRow (self, nR)

Retreive a row inside a 4x4 matrix.

Parameters

nRow [IN] Index of the row in the matrix.

Returns

The row vector of the matrix - RVector4
1 matrix4 = RLPy.RMatrix4()
2 matrix4.MakeIdentity()
3 row0 = matrix4.GetRow(0)
4 
5 print(row0[0])
6 print(row0[1])
7 print(row0[2])
8 print(row0[3])

GetColumn (self, nC)

Retrieve a column inside a 4x4 matrix.

Parameters

nRow [IN] Index of the column in the matrix.

Returns

The column vector of the matrix - RVector4
1 matrix4 = RLPy.RMatrix4()
2 matrix4.MakeIdentity()
3 col0 = matrix4.GetColumn(0)
4 
5 print(col0[0])
6 print(col0[1])
7 print(col0[2])
8 print(col0[3])

Transpose (self)

Obtain the transposed matrix by transposing the current m * n matrix into an n * m matrix by row-column swapping.

Returns

A new matrix containing this matrix's transpose - RMatrix4
 1 matrix4_orgin = RLPy.RMatrix4(  1,  2,  3,  4,
 2                                 5,  6,  7,  8,
 3                                 9, 10, 11, 12,
 4                                13, 14, 15, 16 )
 5 matrix4_transpose = matrix4_orgin.Transpose()
 6 row0 = matrix4_orgin.GetRow(0)
 7 col0 = matrix4_transpose.GetColumn(0)
 8 
 9 print(row0[0] == col0[0])
10 print(row0[1] == col0[1])
11 print(row0[2] == col0[2])
12 print(row0[3] == col0[3])

TransposeTimes (self, mM)

Multiply a transposed version of a 4x4 matrix with itself.

Parameters

mM [IN] the matrix - RMatrix4

Returns

A new matrix. (this^T * mM) - RMatrix4
 1 matrix4_orgin = RLPy.RMatrix4(  1,  2,  3,  4,
 2                                 5,  6,  7,  8,
 3                                 9, 10, 11, 12,
 4                                13, 14, 15, 16 )
 5 matrix4_transpose_value = RLPy.RMatrix4( 2, 0, 0, 0,
 6                                          0, 2, 0, 0,
 7                                          0, 0, 2, 0,
 8                                          0, 0, 0, 2 )
 9 matrix4_transpose_times = matrix4_orgin.TransposeTimes(matrix4_transpose_value)
10 row0 = matrix4_orgin.GetRow(0)
11 col0 = matrix4_transpose_times.GetColumn(0)
12 
13 print(row0[0]*2 == col0[0])
14 print(row0[1]*2 == col0[1])
15 print(row0[2]*2 == col0[2])
16 print(row0[3]*2 == col0[3])

TimesTranspose (self, mM)

Multiply this 4x4 matrix with a transposed version of itself.

Parameters

mM [IN] the matrix - RMatrix4

Returns

A new matrix. (this * M^T) - RMatrix4
 1 matrix4_orgin = RLPy.RMatrix4(  1,  2,  3,  4,
 2                                 5,  6,  7,  8,
 3                                 9, 10, 11, 12,
 4                                13, 14, 15, 16 )
 5 matrix4_transpose_value = RLPy.RMatrix4( 3, 0, 0, 0,
 6                                          0, 3, 0, 0,
 7                                          0, 0, 3, 0,
 8                                          0, 0, 0, 3 )
 9 matrix4_times_transpose = matrix4_orgin.TimesTranspose(matrix4_transpose_value)
10 row0 = matrix4_orgin.GetColumn(0)
11 col0 = matrix4_times_transpose.GetColumn(0)
12 
13 print(row0[0]*3 == col0[0])
14 print(row0[1]*3 == col0[1])
15 print(row0[2]*3 == col0[2])
16 print(row0[3]*3 == col0[3])

Inverse (self)

Obtain the inverse (reciprocal) of this 4x4 matrix (A^-1).

Returns

A new matrix containing this matrix's inverse - RMatrix4
 1 matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 2                                1, 1,-1,-2,
 3                                1,-1,-1, 2,
 4                                1,-2, 1,-1 )
 5 matrix4_inverse = matrix4_value.Inverse()
 6 row0_inverse = matrix4_inverse.GetRow(0)
 7 
 8 print(row0_inverse[0])
 9 print(row0_inverse[1])
10 print(row0_inverse[2])
11 print(row0_inverse[3])

Adjoint (self)

Adjugate this 4x4 matrix.

Returns

A new matrix containing this matrix's adjoint - RMatrix4
 1 matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 2                                1, 1,-1,-2,
 3                                1,-1,-1, 2,
 4                                1,-2, 1,-1 )
 5 matrix4_Adjoint = matrix4_value.Adjoint()
 6 row0_Adjoint = matrix4_Adjoint.GetRow(0)
 7 
 8 print(row0_Adjoint[0])
 9 print(row0_Adjoint[1])
10 print(row0_Adjoint[2])
11 print(row0_Adjoint[3])

AdjointTranspose (self)

Adjugate and transpose this 4x4 matrix.

Returns

A new matrix - RMatrix4
 1 matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 2                                1, 1,-1,-2,
 3                                1,-1,-1, 2,
 4                                1,-2, 1,-1 )
 5 matrix4_Adjoint_transpose = matrix4_value.AdjointTranspose()
 6 col0_Adjoint_transpose = matrix4_Adjoint_transpose.GetColumn(0)
 7 
 8 print(col0_Adjoint_transpose[0] == row0_Adjoint[0])
 9 print(col0_Adjoint_transpose[1] == row0_Adjoint[1])
10 print(col0_Adjoint_transpose[2] == row0_Adjoint[2])
11 print(col0_Adjoint_transpose[3] == row0_Adjoint[3])

InverseTranspose (self)

Invert and transpose this 4x4 matrix.

Returns

A new matrix - RMatrix4
 1 matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 2                                1, 1,-1,-2,
 3                                1,-1,-1, 2,
 4                                1,-2, 1,-1 )
 5 matrix4_inverse_transpose = matrix4_value.InverseTranspose()
 6 col0_inverse_transpose = matrix4_inverse_transpose.GetColumn(0)
 7 
 8 print(col0_inverse_transpose[0] == row0_inverse[0])
 9 print(col0_inverse_transpose[1] == row0_inverse[1])
10 print(col0_inverse_transpose[2] == row0_inverse[2])
11 print(col0_inverse_transpose[3] == row0_inverse[3])

Determinant (self)

Obtain the scalar value for this 4x4 matrix (|A|).

Rlpy rmatrix4 determinant.jpg

Returns

The determinant of the matrix - float
1 matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
2                                1, 1,-1,-2,
3                                1,-1,-1, 2,
4                                1,-2, 1,-1 )
5 print(matrix4_value.Determinant())

MaxColumn (self)

Find the maximum absolute value within this 4x4 matrix, and return the column in which the value is located. If all of the elements within the 4x4 matrix are 0 then return -1.

Returns

Return index of column of M containing maximum abs entry, or -1 if M = 0 - int
1 matrix4_column_value = RLPy.RMatrix4( 1, 2, 3,-5,
2                                       0, 0, 0, 0,
3                                       0, 0, 0, 0,
4                                       0, 0, 0, 0 )
5 print(matrix4_column_value.MaxColumn()) # column:3 -> abs(-5)

MaxRow (self)

Find the maximum absolute value within this 4x4 matrix, and return the row in which the value is located. If all of the elements within the 4x4 matrix are 0 then return -1.

Returns

Return index of row of M containing maximum abs entry, or -1 if M = 0 - int
1 matrix4_row_value = RLPy.RMatrix4( 1, 0, 0, 0,
2                                    2, 0, 0, 0,
3                                    3, 0, 0, 0,
4                                   -5, 0, 0, 0 )
5 print(matrix4_value.MaxRow()) # Row:3 -> abs(-5)

OneNorm (self)

Return the sum of the column elements that contain the largest absolute values.

Returns

Return Norm - float
1 matrix4_row_value = RLPy.RMatrix4( 1, 0, 0, 0,
2                                    2, 0, 0, 0,
3                                    3, 0, 0, 0,
4                                   -5, 0, 0, 0 )
5 print(matrix4_row_value.OneNorm()) # 11 -> 1+2+abs(-5)

InfNorm (self)

Return the sum of the row elements that contain the largest absolute values.

Returns

Return InfNorm - float
1 matrix4_column_value = RLPy.RMatrix4( 1, 2, 3,-5,
2                                       0, 0, 0, 0,
3                                       0, 0, 0, 0,
4                                       0, 0, 0, 0 )
5 print(matrix4_column_value.InfNorm()) # 11 -> 1+2+abs(-5)

FromRTS (self, kRotate, kTranslate, kScale)

Apply rotate, translate, and scale data to a 4x4 matrix.

Parameters

kRotate [IN] Rotate Matrix - RMatrix3
kTranslate [IN] Translate vector - RVector3
kScale [IN] Scale vector - RVector3

Returns

Return a new matrix from RTS - RMatrix4
 1 rotate = RLPy.RMatrix3( 1, 0, 0,
 2                         0, 1, 0,
 3                         0, 0, 1 )
 4 translate = RLPy.RVector3( 1, 0, 0 )
 5 scale = RLPy.RVector3( 2, 2, 2 )
 6 matrix4_result =  RLPy.RMatrix4().FromRTS( rotate, translate, scale )
 7 row0 = matrix4_result.GetRow(0)
 8 
 9 print(row0[0])
10 print(row0[1])
11 print(row0[2])
12 print(row0[3])

GetSimpleRTS (self, rkRotate, rkTranslate, rkScale)

Retrieve rotation, translation, and scale data from this 4x4 matrix.

Parameters

rkRotate [IN] Angle of x-axis in radians - float
rkTranslate [IN] Angle of y-axis in radians - float
rkScale [IN] Angle of z-axis in radians - float

Returns

 1 matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 2                                1, 1,-1,-2,
 3                                1,-1,-1, 2,
 4                                1,-2, 1,-1 )
 5 rotate = RLPy.RMatrix3()
 6 translate = RLPy.RVector3()
 7 scale = RLPy.RVector3()
 8 matrix4_value.GetSimpleRTS( rotate, translate, scale )
 9 row0 = rotate.GetRow(0)
10 
11 print(row0[0])
12 print(row0[1])
13 print(row0[2])
14 
15 print(translate[0])
16 print(translate[1])
17 print(translate[2])
18 
19 print(scale[0])
20 print(scale[1])
21 print(scale[2])

GetSimpleRotate (self, rkRotate)

Retrieve rotation data from this 4x4 matrix.

Parameters

rkRotate [IN] Rotation Matrix - RMatrix3

Returns

3x3 matrix rotation data of this 4x4 matrix.
 1 matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 2                                1, 1,-1,-2,
 3                                1,-1,-1, 2,
 4                                1,-2, 1,-1 
 5 rotate = RLPy.RMatrix3()
 6 matrix4_value.GetSimpleRotate( rotate )
 7 row0 = rotate.GetRow(0)
 8 
 9 print(row0[0])
10 print(row0[1])
11 print(row0[2])

SetTranslateZero (self)

Set the translation data in this 4x4 matrix to 0.

 1 matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 2                                1, 1,-1,-2,
 3                                1,-1,-1, 2,
 4                                1,-2, 1,-1 
 5 matrix4_value.SetTranslateZero()
 6 row3 = matrix4_value.GetRow(3)
 7 
 8 print(row3[0] == 0)
 9 print(row3[1] == 0)
10 print(row3[2] == 0)

RotationX (self, fAngle)

Rotation matrix for rotations around x-axis.

Parameters

fAngle [IN] angle in radians - float

Returns

Return a new matrix of for rotations around x-axis - RMatrix4
1 matrix4_orgin = RLPy.RMatrix4()
2 matrix4_orgin.MakeIdentity()
3 matrix4_orgin.RotationX( 90 * RLPy.RMath.CONST_DEG_TO_RAD )

RotationY (self, fAngle)

Rotation matrix for rotations around y-axis.

Parameters

fAngle [IN] angle in radians - float

Returns

Return a new matrix of for rotations around y-axis - RMatrix4
1 matrix4_orgin = RLPy.RMatrix4()
2 matrix4_orgin.MakeIdentity()
3 matrix4_orgin.RotationY( 90 * RLPy.RMath.CONST_DEG_TO_RAD )

RotationZ (self, fAngle)

Rotation matrix for rotations around z-axis.

Parameters

fAngle [IN] angle in radians - float

Returns

Return a new matrix of for rotations around z-axis - RMatrix4
1 matrix4_orgin = RLPy.RMatrix4()
2 matrix4_orgin.MakeIdentity()
3 matrix4_orgin.RotationZ( 90 * RLPy.RMath.CONST_DEG_TO_RAD )

RotateAxisAngle (self, rkAxis, fAngle)

Rotation matrix from axis angle.

Parameters

rkAxis [IN] axis vector - RVector3
fAngle [IN] angle in radians - float

Returns

Return a new matrix from specified axis angle - RMatrix4
 1 matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
 2                                1, 1,-1,-2,
 3                                1,-1,-1, 2,
 4                                1,-2, 1,-1 
 5 x_axis_vector = RLPy.RVector3( 1, 0, 0 )  # axis = "X"
 6 y_axis_vector = RLPy.RVector3( 0, 1, 0 )  # axis = "Y"
 7 z_axis_vector = RLPy.RVector3( 0, 0, 1 )  # axis = "Z"    
 8 matrix4_value.RotateAxisAngle( x_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
 9 matrix4_value.RotateAxisAngle( y_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
10 matrix4_value.RotateAxisAngle( z_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )

FromEulerAngle (self, Oreder, rx, ry, rz)

Convert Euler angle to a 4x4 matrix according to a rotation axis order.

Parameters

Oreder [IN] Euler order - RLPY.EEulerOrder
  • EEulerOrder_XYZ = _RLPy.EEulerOrder_XYZ
  • EEulerOrder_ZYX = _RLPy.EEulerOrder_ZYX
  • EEulerOrder_XZY = _RLPy.EEulerOrder_XZY
  • EEulerOrder_YZX = _RLPy.EEulerOrder_YZX
  • EEulerOrder_YXZ = _RLPy.EEulerOrder_YXZ
  • EEulerOrder_ZXY = _RLPy.EEulerOrder_ZXY
rx [IN] Angle of x-axis in radians - float
ry [IN] Angle of y-axis in radians - float
rz [IN] Angle of z-axis in radians - float

Returns

Return a new matrix from specified axis angle - RMatrix4
 1 euler_angle_x = 90 * RLPy.RMath.CONST_DEG_TO_RAD
 2 euler_angle_y = 0
 3 euler_angle_z = 0
 4 matrix4_result = RLPy.RMatrix4().FromEulerAngle( RLPy.EEulerOrder_XYZ, euler_angle_x, euler_angle_y, euler_angle_z)
 5 row0 = matrix4_result[0].GetRow(0)
 6 
 7 print(row0[0])
 8 print(row0[1])
 9 print(row0[2])
10 print(row0[3])

SetSR (self, mSR)

Set scale and rotation part of the matrix.

Parameters

mSR [IN] 3x3 matrix - RMatrix3

Returns

Return a new 4x4 matrix - RMatrix4
1 matrix4_orgin = RLPy.RMatrix4()
2 matrix4_orgin.MakeIdentity()
3 matrix3_rotate_value = RLPy.RMatrix3( 1, 0, 0,
4                                       0, 1, 0,
5                                       0, 0, 1 )
6 matrix4_orgin.SetSR(matrix3_rotate_value)

GetSR (self)

Get scale and rotation part of the matrix.

Returns

Return a 3x3 matrix - RMatrix3
1 matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
2                                1, 1,-1,-2,
3                                1,-1,-1, 2,
4                                1,-2, 1,-1 
5 result = matrix4_value.GetSR()
6 row0 = result.GetRow(0)
7 print(row0[0])
8 print(row0[1])
9 print(row0[2])

SetTranslate (self, vTranslate)

Set translate of the matrix.

Parameters

vTranslate [IN] Translate vector - RVector3

Returns

New matrix with the specified translation - RMatrix4
1 matrix4_orgin = RLPy.RMatrix4()
2 matrix4_orgin.MakeIdentity()
3 matrix4_orgin.SetTranslate(RLPy.RVector3( 1, 2, 3 ) )

GetTranslate (self)

Get translate of the matrix.

Returns

Return a translate vector - RVector3
1 matrix4_orgin = RLPy.RMatrix4()
2 matrix4_orgin.MakeIdentity()
3 matrix4_orgin.SetTranslate(RLPy.RVector3( 1, 2, 3 ) )
4 result = matrix4_orgin.GetTranslate()
5 
6 print(result[0] == 1)
7 print(result[1] == 2)
8 print(result[2] == 3)

AccuScale (self, rkScale)

Accumulate this 4x4 matrix with scale vector.

Parameters

rkScale [IN] Scale vector - RVector3

Returns

Accumulate of this 4x4 matrix with scale vector - RMatrix4
 1 matrix4_orgin = RLPy.RMatrix4()
 2 matrix4_orgin.MakeIdentity()
 3 matrix4_orgin.AccuScale(RLPy.RVector3( 2, 2, 2 ) )
 4 matrix4_orgin.AccuScale(RLPy.RVector3( 3, 3, 3 ) )
 5 result = matrix4_orgin.GetSR()
 6 row0 = result.GetRow(0)
 7 print(row0[0] == 2*3)
 8 row1 = result.GetRow(1)
 9 print(row1[1] == 2*3)
10 row2 = result.GetRow(2)
11 print(row2[2] == 2*3)

AccuRotate (self, rkRotate)

Accumulate this 4x4 matrix with rotation matrix.

Parameters

rkRotate [IN] Rotation matrix - RMatrix3

Returns

Accumulate this 4x4 matrix and rotation matrix - RMatrix4
 1 matrix4_orgin = RLPy.RMatrix4()
 2 matrix4_orgin.MakeIdentity()
 3 matrix3_orgin = RLPy.RMatrix3()
 4 matrix3_orgin.FromAxisAngle( RLPy.RVector3( 0, 1, 0 ), 90 * RLPy.RMath.CONST_DEG_TO_RAD )
 5 matrix4_orgin.AccuRotate(matrix3_orgin)
 6 matrix4_orgin.AccuRotate(matrix3_orgin)
 7 rotate = RLPy.RMatrix3()
 8 matrix4_orgin.GetSimpleRotate( rotate )
 9 row0 = rotate.GetRow(0)
10 print(row0[0])
11 print(row0[1])
12 print(row0[2])

AccuTranslate (self, rkTranslate)

Accumulate this 4x4 matrix with translate vector.

Parameters

rkTranslate [IN] Translate vector - RVector3

Returns

Accumulate of this 4x4 matrix and translation vector - RMatrix4
1 matrix4_orgin = RLPy.RMatrix4()
2 matrix4_orgin.MakeIdentity()
3 matrix4_orgin.AccuTranslate(RLPy.RVector3( 1, 2, 3 ) )
4 matrix4_orgin.AccuTranslate(RLPy.RVector3( 2, 2, 2 ) )
5 row3 = matrix4_orgin.GetRow(3)
6 print(row3[0] == 1+2)
7 print(row3[1] == 2+2)
8 print(row3[2] == 2+3)