IC Python API:RLPy RTransform
Contents
- 1 Description
- 2 Operators
- 3 Member Functions
- Main article: Modules.
- Last modified: 04/7/2020
Description
This class represent the object transform data. This class provides access to RLPy's internal 4x4 matrix operators and related functions.
See also: RMatrix4
Operators
+
The "addition" operator.
See Also: +=
matrix_a = RLPy.RMatrix4( 2, 0, 0, 0,
0, 2, 0, 0,
0, 0, 2, 0,
1, 2, 3, 1 )
matrix_b = RLPy.RMatrix4( 3, 0, 0, 0,
0, 3, 0, 0,
0, 0, 3, 0,
2, 2, 2, 1 )
transform = RLPy.RTransform().From( matrix_a ) + RLPy.RTransform().From( matrix_b )
print( transform.Matrix().GetRow(0)[0] == 2*3 ) # true
print( transform.Matrix().GetRow(1)[1] == 2*3 ) # true
print( transform.Matrix().GetRow(2)[2] == 2*3 ) # true
print( transform.Matrix().GetRow(3)[0] == 1+2 ) # true
print( transform.Matrix().GetRow(3)[1] == 2+2 ) # true
print( transform.Matrix().GetRow(3)[2] == 3+2 ) # true
==
The "equal to" operator.
See Also: !=
transform_identity = RLPy.RTransform(RLPy.RTransform.IDENTITY)
print( transform_identity == transform_identity ) # true
!=
The "not equal to" operator.
See Also: ==
transform_identity = RLPy.RTransform(RLPy.RTransform.IDENTITY)
print( transform_identity != transform_identity ) # false
+=
The "addition assignment" operator.
See Also: +
matrix_a = RLPy.RMatrix4( 2, 0, 0, 0,
0, 2, 0, 0,
0, 0, 2, 0,
1, 2, 3, 1 )
matrix_b = RLPy.RMatrix4( 3, 0, 0, 0,
0, 3, 0, 0,
0, 0, 3, 0,
2, 2, 2, 1 )
transform = RLPy.RTransform().From( matrix_a )
transform += RLPy.RTransform().From( matrix_b )
print( transform.Matrix().GetRow(0)[0] == 2*3 ) # true
print( transform.Matrix().GetRow(1)[1] == 2*3 ) # true
print( transform.Matrix().GetRow(2)[2] == 2*3 ) # true
print( transform.Matrix().GetRow(3)[0] == 1+2 ) # true
print( transform.Matrix().GetRow(3)[1] == 2+2 ) # true
print( transform.Matrix().GetRow(3)[2] == 3+2 ) # true
Member Functions
D (self, args)
Get the determinate sign.
Returns
- Returns the value of determinate sign - float
transform_identity = RLPy.RTransform(RLPy.RTransform.IDENTITY)
print(transform_identity.D()) # <Swig Object of type 'float *' at 0x0000027B8A2D1FC0>
S (self, args)
Get the Scale of a Transform matrix.
Returns
- The value of scale in 3D vector - RVector3
d_determinate = 0
s_scale = RLPy.RVector3( RLPy.RVector3.ZERO )
u_stretch = RLPy.RQuaternion( RLPy.RQuaternion.IDENTITY )
r_rotate = RLPy.RQuaternion( RLPy.RQuaternion.IDENTITY )
t_translate = RLPy.RVector3( RLPy.RVector3.ZERO )
s_scale.x = 1
s_scale.y = 2
s_scale.z = 3
transform_data = RLPy.RTransform(d_determinate,s_scale,u_stretch,r_rotate,t_translate )
print( transform_data.S().x ) # 1
print( transform_data.S().y ) # 2
print( transform_data.S().z ) # 3
U (self, args)
Get the stretch of Transform matrix.
Returns
- The value of stretch in quaternion - RQuaternion
d_determinate = 0
s_scale = RLPy.RVector3( RLPy.RVector3.ZERO )
u_stretch = RLPy.RQuaternion( RLPy.RQuaternion.IDENTITY )
r_rotate = RLPy.RQuaternion( RLPy.RQuaternion.IDENTITY )
t_translate = RLPy.RVector3( RLPy.RVector3.ZERO )
u_stretch.x = 4
u_stretch.y = 5
u_stretch.z = 6
u_stretch.w = 7
transform_data = RLPy.RTransform(d_determinate,s_scale,u_stretch,r_rotate,t_translate )
print( transform_data.U().x ) # 4
print( transform_data.U().y ) # 5
print( transform_data.U().z ) # 6
print( transform_data.U().w ) # 7
R (self, args)
Get the rotation of Transform matrix.
Returns
- The value of rotation in quaternion - RQuaternion
d_determinate = 0
s_scale = RLPy.RVector3( RLPy.RVector3.ZERO )
u_stretch = RLPy.RQuaternion( RLPy.RQuaternion.IDENTITY )
r_rotate = RLPy.RQuaternion( RLPy.RQuaternion.IDENTITY )
t_translate = RLPy.RVector3( RLPy.RVector3.ZERO )
r_rotate.x = 8
r_rotate.y = 9
r_rotate.z = 10
r_rotate.w = 11
transform_data = RLPy.RTransform(d_determinate,s_scale,u_stretch,r_rotate,t_translate )
print( transform_data.R().x ) # 8
print( transform_data.R().y ) # 9
print( transform_data.R().z ) # 10
print( transform_data.R().w ) # 11
T (self, args)
Get the translation of Transform matrix.
Returns
- The value of translation in 3D vector - RVector3.
d_determinate = 0
s_scale = RLPy.RVector3( RLPy.RVector3.ZERO )
u_stretch = RLPy.RQuaternion( RLPy.RQuaternion.IDENTITY )
r_rotate = RLPy.RQuaternion( RLPy.RQuaternion.IDENTITY )
t_translate = RLPy.RVector3( RLPy.RVector3.ZERO )
t_translate.x = 12
t_translate.y = 13
t_translate.z = 14
transform_data = RLPy.RTransform(d_determinate,s_scale,u_stretch,r_rotate,t_translate )
print( transform_data.T().x ) # 12
print( transform_data.T().y ) # 13
print( transform_data.T().z ) # 14
AlmostEquel (self, kRts)
Two transform are almost equal or not.
Parameters
- kRts [IN] The transform - RTransform
Returns
- Return true while two transform is almost equal - bool
matrix4 = RLPy.RMatrix4(-1, 0, 0, 0,
0,-1, 0, 0,
0, 0, 1, 0,
-1, 1, 1, 1 )
transform1 = RLPy.RTransform().From( matrix4 )
transform2 = RLPy.RTransform().From( matrix4 )
print( transform1.AlmostEquel( transform2 )) # True
Inverse (self)
Inverse of the transform..
Returns
- A inversed transform - RTransform
matrix4 = RLPy.RMatrix4(-1, 0, 0, 0,
0,-1, 0, 0,
0, 0, 1, 0,
-1, 1, 1, 1 )
transform = RLPy.RTransform().From( matrix4 )
print( transform.Matrix().GetRow(0)[0] )
print( transform.Matrix().GetRow(0)[1] )
From (self, mMatrix)
Set a transform from 4x4 matrix.
Returns
- A transform composited from 4x4 matrix - RTransform
matrix4 = RLPy.RMatrix4(-1, 0, 0, 0,
0,-1, 0, 0,
0, 0, 1, 0,
-1, 1, 1, 1 )
transform = RLPy.RTransform().From( matrix4 )
print( transform.Matrix().GetRow(0)[0] )
print( transform.Matrix().GetRow(0)[1] )
Matrix (self)
Get 4x4 matrix from Transform.
Returns
- A 4x4 matrix - RMatrix4
matrix4 = RLPy.RMatrix4( 0,-1, 0, 0,
-1, 0, 0, 0,
0, 0,-1, 0,
1,-2, 1, 1 )
transform_data = RLPy.RTransform().From( matrix4 )
transform_data_matrix = transform_data.Matrix()
print( transform_data_matrix.GetRow(0)[0] )
print( transform_data_matrix.GetRow(0)[1] )
IsIdentity (self)
Check if this transform is identity.
Returns
- True if the transform is identity - bool
matrix4 = RLPy.RMatrix4( 1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1 )
transform_data = RLPy.RTransform().From( matrix4 )
print( transform_data.IsIdentity() ) # True
Scale (self)
Form a scale matrix..
Returns
- A 3x3 scale matrix from this transform - RMatrix3
scale = RLPy.RVector3( 4, 5, 6 )
matrix4 = RLPy.RMatrix4().FromRTS( RLPy.RMatrix3.IDENTITY,
RLPy.RVector3.UNIT_XYZ,
scale )
transform_data = RLPy.RTransform().From( matrix4 )
print( transform_data.Scale().GetRow(0)[0] ) # 4
print( transform_data.Scale().GetRow(1)[1] ) # 5
print( transform_data.Scale().GetRow(2)[2] ) # 6
Rotate (self)
Form a rotate matrix.
Returns
- A 3x3 rotate matrix from this transform - RMatrix3
rotate = RLPy.RMatrix3( 0.8137977, -0.4698463, 0.3420202,
0.5438381, 0.8231729, -0.1631759,
-0.2048741, 0.3187958, 0.9254166 )
matrix4 = RLPy.RMatrix4().FromRTS( rotate, RLPy.RVector3.UNIT_XYZ , RLPy.RVector3.UNIT_XYZ )
transform_data = RLPy.RTransform().From( matrix4 )
print( transform_data.Rotate().GetRow(0)[0] )
print( transform_data.Rotate().GetRow(0)[1] )
print( transform_data.Rotate().GetRow(0)[2] )
GetSR (self)
Form a 3x3 matrix with rotation and scale.
Returns
- A 3x3 matrix from this transform - RMatrix3
scale = RLPy.RVector3( 2, 2, 2 )
rotate = RLPy.RMatrix3( -0,-0, 1,
-1,-0, 0,
0,-1,-0 )
matrix4 = RLPy.RMatrix4().FromRTS( rotate, RLPy.RVector3.UNIT_XYZ , scale )
transform_data = RLPy.RTransform().From( matrix4 )
print( transform_data.GetSR().GetRow(0)[0] ) # -0*2 = 0
print( transform_data.GetSR().GetRow(0)[1] ) # -0*2 = 0
print( transform_data.GetSR().GetRow(0)[2] ) # 1*2 = 2