IC Python API:RLPy RMatrix4
Contents
- 1 Description
- 2 Operators
- 3 Member Functions
- 3.1 MakeIdentity (self)
- 3.2 M (self, args)
- 3.3 E (self, args)
- 3.4 GetRow (self, nR)
- 3.5 GetColumn (self, nC)
- 3.6 Transpose (self)
- 3.7 TransposeTimes (self, mM)
- 3.8 TimesTranspose (self, mM)
- 3.9 Inverse (self)
- 3.10 Adjoint (self)
- 3.11 AdjointTranspose (self)
- 3.12 InverseTranspose (self)
- 3.13 Determinant (self)
- 3.14 MaxColumn (self)
- 3.15 MaxRow (self)
- 3.16 OneNorm (self)
- 3.17 InfNorm (self)
- 3.18 FromRTS (self, kRotate, kTranslate, kScale)
- 3.19 GetSimpleRTS (self, rkRotate, rkTranslate, rkScale)
- 3.20 GetSimpleRotate (self, rkRotate)
- 3.21 SetTranslateZero (self)
- 3.22 RotationX (self, fAngle)
- 3.23 RotationY (self, fAngle)
- 3.24 RotationZ (self, fAngle)
- 3.25 RotateAxisAngle (self, rkAxis, fAngle)
- 3.26 FromEulerAngle (self, Oreder, rx, ry, rz)
- 3.27 SetSR (self, mSR)
- 3.28 GetSR (self)
- 3.29 SetTranslate (self, vTranslate)
- 3.30 GetTranslate (self)
- 3.31 AccuScale (self, rkScale)
- 3.32 AccuRotate (self, rkRotate)
- 3.33 AccuTranslate (self, rkTranslate)
- Main article: Modules.
- Last modified: 04/7/2020
Description
This class represent the transform data of RTransform. This class provides access to RLPy's internal 4x4 matrix operators and related functions.
Operators
+
The "addition" operator.
See Also: +=
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
matrix4_b = RLPy.RMatrix4( 2, 2, 2, 2,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
matrix4_result = matrix4_a + matrix4_b
print( matrix4_result.GetRow(0)[0] == 1+2 ) # true
print( matrix4_result.GetRow(0)[1] == 2+2 ) # true
print( matrix4_result.GetRow(0)[2] == 3+2 ) # true
print( matrix4_result.GetRow(0)[3] == 4+2 ) # true
-
The "subtraction" operator.
See Also: -=
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
matrix4_b = RLPy.RMatrix4( 2, 2, 2, 2,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
matrix4_result = matrix4_a - matrix4_b
print( matrix4_result.GetRow(0)[0] == 1-2 ) # true
print( matrix4_result.GetRow(0)[1] == 2-2 ) # true
print( matrix4_result.GetRow(0)[2] == 3-2 ) # true
print( matrix4_result.GetRow(0)[3] == 4-2 ) # true
*
The "multiplication" operator.
See Also: *=
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
matrix4_b = RLPy.RMatrix4( 2, 0, 0, 0,
2, 0, 0, 0,
2, 0, 0, 0,
2, 0, 0, 0 )
matrix4_result = matrix4_a * matrix4_b
print( matrix4_result.GetRow(0)[0] == 1*2 + 2*2 + 3*2 + 4*2 ) # true
/
The "division" operator.
See Also: /=
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
matrix4_result = matrix4_a / 2
print( matrix4_result.GetRow(0)[0] == 1/2 ) # true
print( matrix4_result.GetRow(0)[1] == 2/2 ) # true
print( matrix4_result.GetRow(0)[2] == 3/2 ) # true
print( matrix4_result.GetRow(0)[3] == 4/2 ) # true
-
The "unary minus" .
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
matrix4_result = -matrix4_a
print( matrix4_result.GetRow(0)[0] == -1 ) # true
print( matrix4_result.GetRow(0)[1] == -2 ) # true
print( matrix4_result.GetRow(0)[2] == -3 ) # true
print( matrix4_result.GetRow(0)[3] == -4 ) # true
==
The "equal to" operator. Performs a one-by-one comparison of the matrix array.
See Also: !=
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
matrix4_b = RLPy.RMatrix4( 1, 2, 3, 4,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
print( matrix4_a == matrix4_b ) # true
!=
The "not equal to" operator. Performs a one-by-one comparison of the matrix array.
See Also: ==
matrix4_a = RLPy.RMatrix4( 1, 2, 3, 4,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
matrix4_b = RLPy.RMatrix4( 2, 2, 2, 2,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
print( matrix4_a != matrix4_b ) # true
>
The "greater than" operator. Performs a one-by-one comparison of the matrix array.
See Also: >=
matrix4_a = RLPy.RMatrix4( 1, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
matrix4_b = RLPy.RMatrix4( 2, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
print( matrix4_b > matrix4_a ) # true
>=
The "greater than or equal to" operator. Performs a one-by-one comparison of the matrix array.
See Also: >
matrix4_a = RLPy.RMatrix4( 1, 1, 1, 4,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
matrix4_b = RLPy.RMatrix4( 1, 1, 1, 8,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
print( matrix4_b >= matrix4_a ) # true
<
The "less than" operator. Performs a one-by-one comparison of the matrix array.
See Also: <=
matrix4_a = RLPy.RMatrix4( 2, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
matrix4_b = RLPy.RMatrix4( 3, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
print( matrix4_a < matrix4_b ) # true
<=
The "less than" operator. Performs a one-by-one comparison of the matrix array.
See Also: <
matrix4_a = RLPy.RMatrix4( 2, 2, 1, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
matrix4_b = RLPy.RMatrix4( 2, 2, 5, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
print( matrix4_a <= matrix4_b ) # true
+=
The "addition assignment" operator.
See Also: +
matrix4 = RLPy.RMatrix4( 1, 2, 3, 4,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
matrix4 += RLPy.RMatrix4( 2, 2, 2, 2,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
print( matrix4.GetRow(0)[0] == 1+2 ) # true
print( matrix4.GetRow(0)[1] == 2+2 ) # true
print( matrix4.GetRow(0)[2] == 3+2 ) # true
print( matrix4.GetRow(0)[3] == 4+2 ) # true
-=
The "subtraction assignment" operator.
See Also: -
matrix4 = RLPy.RMatrix4( 1, 2, 3, 4,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
matrix4 -= RLPy.RMatrix4( 2, 2, 2, 2,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
print( matrix4.GetRow(0)[0] == 1-2 ) # true
print( matrix4.GetRow(0)[1] == 2-2 ) # true
print( matrix4.GetRow(0)[2] == 3-2 ) # true
print( matrix4.GetRow(0)[3] == 4-2 ) # true
*=
The "multiplication assignment" operator. For the calculation method, refer to the * operator.
See Also: *
matrix4 = RLPy.RMatrix4( 1, 2, 3, 4,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
matrix4 *= 2
print( matrix4.GetRow(0)[0] == 1*2 ) # true
print( matrix4.GetRow(0)[1] == 2*2 ) # true
print( matrix4.GetRow(0)[2] == 3*2 ) # true
print( matrix4.GetRow(0)[3] == 4*2 ) # true
/=
The "division assignment" operator. For the calculation method, refer to the / operator.
See Also: /
matrix4 = RLPy.RMatrix4( 1, 2, 3, 4,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
matrix4 /= 2
print( matrix4.GetRow(0)[0] == 1/2 ) # true
print( matrix4.GetRow(0)[1] == 2/2 ) # true
print( matrix4.GetRow(0)[2] == 3/2 ) # true
print( matrix4.GetRow(0)[3] == 4/2 ) # true
Member Functions
MakeIdentity (self)
This function can be used to initialize the 3x3 matrix. It is equivalent to setting the matrix to:
- [1 0 0 0]
- [0 1 0 0]
- [0 0 1 0]
- [0 0 0 1]
Returns
- This object - RMatrix4
matrix4 = RLPy.RMatrix4()
matrix4.MakeIdentity()
M (self, args)
Get the value of an element in a 4x4 matrix by row and column index.
Parameters
- nRow[IN] Index of the row in the matrix - intnCol[IN] Index of the column in the matrix - int
Returns
- The matrix element specified by row and col - float
matrix4 = RLPy.RMatrix4()
matrix4.MakeIdentity()
print(matrix4.M(0,0)) #
E (self, args)
Get the value of an element in a 3x3 matrix by index number (from 0 to 15);
Parameters
- nRow[IN] Index of the matrix.
Returns
- The matrix element specified by index - float
matrix4 = RLPy.RMatrix4()
matrix4.MakeIdentity()
print(matrix4.E(0)) #
GetRow (self, nR)
Retreive a row inside a 4x4 matrix.
Parameters
- nRow[IN] Index of the row in the matrix.
Returns
- The row vector of the matrix - RVector4
matrix4 = RLPy.RMatrix4()
matrix4.MakeIdentity()
row0 = matrix4.GetRow(0)
print(row0[0])
print(row0[1])
print(row0[2])
print(row0[3])
GetColumn (self, nC)
Retrieve a column inside a 4x4 matrix.
Parameters
- nRow[IN] Index of the column in the matrix.
Returns
- The column vector of the matrix - RVector4
matrix4 = RLPy.RMatrix4()
matrix4.MakeIdentity()
col0 = matrix4.GetColumn(0)
print(col0[0])
print(col0[1])
print(col0[2])
print(col0[3])
Transpose (self)
Obtain the transposed matrix by transposing the current m * n matrix into an n * m matrix by row-column swapping.
Returns
- A new matrix containing this matrix's transpose - RMatrix4
matrix4_orgin = RLPy.RMatrix4( 1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15, 16 )
matrix4_transpose = matrix4_orgin.Transpose()
row0 = matrix4_orgin.GetRow(0)
col0 = matrix4_transpose.GetColumn(0)
print(row0[0] == col0[0])
print(row0[1] == col0[1])
print(row0[2] == col0[2])
print(row0[3] == col0[3])
TransposeTimes (self, mM)
Multiply a transposed version of a 4x4 matrix with itself.
Parameters
- mM[IN] the matrix - RMatrix4
Returns
- A new matrix. (this^T * mM) - RMatrix4
matrix4_orgin = RLPy.RMatrix4( 1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15, 16 )
matrix4_transpose_value = RLPy.RMatrix4( 2, 0, 0, 0,
0, 2, 0, 0,
0, 0, 2, 0,
0, 0, 0, 2 )
matrix4_transpose_times = matrix4_orgin.TransposeTimes(matrix4_transpose_value)
row0 = matrix4_orgin.GetRow(0)
col0 = matrix4_transpose_times.GetColumn(0)
print(row0[0]*2 == col0[0])
print(row0[1]*2 == col0[1])
print(row0[2]*2 == col0[2])
print(row0[3]*2 == col0[3])
TimesTranspose (self, mM)
Multiply this 4x4 matrix with a transposed version of itself.
Parameters
- mM[IN] the matrix - RMatrix4
Returns
- A new matrix. (this * M^T) - RMatrix4
matrix4_orgin = RLPy.RMatrix4( 1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15, 16 )
matrix4_transpose_value = RLPy.RMatrix4( 3, 0, 0, 0,
0, 3, 0, 0,
0, 0, 3, 0,
0, 0, 0, 3 )
matrix4_times_transpose = matrix4_orgin.TimesTranspose(matrix4_transpose_value)
row0 = matrix4_orgin.GetColumn(0)
col0 = matrix4_times_transpose.GetColumn(0)
print(row0[0]*3 == col0[0])
print(row0[1]*3 == col0[1])
print(row0[2]*3 == col0[2])
print(row0[3]*3 == col0[3])
Inverse (self)
Obtain the inverse (reciprocal) of this 4x4 matrix (A^-1).
Returns
- A new matrix containing this matrix's inverse - RMatrix4
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
1, 1,-1,-2,
1,-1,-1, 2,
1,-2, 1,-1 )
matrix4_inverse = matrix4_value.Inverse()
row0_inverse = matrix4_inverse.GetRow(0)
print(row0_inverse[0])
print(row0_inverse[1])
print(row0_inverse[2])
print(row0_inverse[3])
Adjoint (self)
Adjugate this 4x4 matrix.
Returns
- A new matrix containing this matrix's adjoint - RMatrix4
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
1, 1,-1,-2,
1,-1,-1, 2,
1,-2, 1,-1 )
matrix4_Adjoint = matrix4_value.Adjoint()
row0_Adjoint = matrix4_Adjoint.GetRow(0)
print(row0_Adjoint[0])
print(row0_Adjoint[1])
print(row0_Adjoint[2])
print(row0_Adjoint[3])
AdjointTranspose (self)
Adjugate and transpose this 4x4 matrix.
Returns
- A new matrix - RMatrix4
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
1, 1,-1,-2,
1,-1,-1, 2,
1,-2, 1,-1 )
matrix4_Adjoint_transpose = matrix4_value.AdjointTranspose()
col0_Adjoint_transpose = matrix4_Adjoint_transpose.GetColumn(0)
print(col0_Adjoint_transpose[0] == row0_Adjoint[0])
print(col0_Adjoint_transpose[1] == row0_Adjoint[1])
print(col0_Adjoint_transpose[2] == row0_Adjoint[2])
print(col0_Adjoint_transpose[3] == row0_Adjoint[3])
InverseTranspose (self)
Invert and transpose this 4x4 matrix.
Returns
- A new matrix - RMatrix4
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
1, 1,-1,-2,
1,-1,-1, 2,
1,-2, 1,-1 )
matrix4_inverse_transpose = matrix4_value.InverseTranspose()
col0_inverse_transpose = matrix4_inverse_transpose.GetColumn(0)
print(col0_inverse_transpose[0] == row0_inverse[0])
print(col0_inverse_transpose[1] == row0_inverse[1])
print(col0_inverse_transpose[2] == row0_inverse[2])
print(col0_inverse_transpose[3] == row0_inverse[3])
Determinant (self)
Obtain the scalar value for this 4x4 matrix (|A|).
Returns
- The determinant of the matrix - float
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
1, 1,-1,-2,
1,-1,-1, 2,
1,-2, 1,-1 )
print(matrix4_value.Determinant())
MaxColumn (self)
Find the maximum absolute value within this 4x4 matrix, and return the column in which the value is located. If all of the elements within the 4x4 matrix are 0 then return -1.
Returns
- Return index of column of M containing maximum abs entry, or -1 if M = 0 - int
matrix4_column_value = RLPy.RMatrix4( 1, 2, 3,-5,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
print(matrix4_column_value.MaxColumn()) # column:3 -> abs(-5)
MaxRow (self)
Find the maximum absolute value within this 4x4 matrix, and return the row in which the value is located. If all of the elements within the 4x4 matrix are 0 then return -1.
Returns
- Return index of row of M containing maximum abs entry, or -1 if M = 0 - int
matrix4_row_value = RLPy.RMatrix4( 1, 0, 0, 0,
2, 0, 0, 0,
3, 0, 0, 0,
-5, 0, 0, 0 )
print(matrix4_value.MaxRow()) # Row:3 -> abs(-5)
OneNorm (self)
Return the sum of the column elements that contain the largest absolute values.
Returns
- Return Norm - float
matrix4_row_value = RLPy.RMatrix4( 1, 0, 0, 0,
2, 0, 0, 0,
3, 0, 0, 0,
-5, 0, 0, 0 )
print(matrix4_row_value.OneNorm()) # 11 -> 1+2+abs(-5)
InfNorm (self)
Return the sum of the row elements that contain the largest absolute values.
Returns
- Return InfNorm - float
matrix4_column_value = RLPy.RMatrix4( 1, 2, 3,-5,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0 )
print(matrix4_column_value.InfNorm()) # 11 -> 1+2+abs(-5)
FromRTS (self, kRotate, kTranslate, kScale)
Apply rotate, translate, and scale data to a 4x4 matrix.
Parameters
- kRotate [IN] Rotate Matrix - RMatrix3
- kTranslate[IN] Translate vector - RVector3
- kScale [IN] Scale vector - RVector3
Returns
- Return a new matrix from RTS - RMatrix4
rotate = RLPy.RMatrix3( 1, 0, 0,
0, 1, 0,
0, 0, 1 )
translate = RLPy.RVector3( 1, 0, 0 )
scale = RLPy.RVector3( 2, 2, 2 )
matrix4_result = RLPy.RMatrix4().FromRTS( rotate, translate, scale )
row0 = matrix4_result.GetRow(0)
print(row0[0])
print(row0[1])
print(row0[2])
print(row0[3])
GetSimpleRTS (self, rkRotate, rkTranslate, rkScale)
Retrieve rotation, translation, and scale data from this 4x4 matrix.
Parameters
- rkRotate [IN] Angle of x-axis in radians - float
- rkTranslate[IN] Angle of y-axis in radians - float
- rkScale [IN] Angle of z-axis in radians - float
Returns
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
1, 1,-1,-2,
1,-1,-1, 2,
1,-2, 1,-1 )
rotate = RLPy.RMatrix3()
translate = RLPy.RVector3()
scale = RLPy.RVector3()
matrix4_value.GetSimpleRTS( rotate, translate, scale )
row0 = rotate.GetRow(0)
print(row0[0])
print(row0[1])
print(row0[2])
print(translate[0])
print(translate[1])
print(translate[2])
print(scale[0])
print(scale[1])
print(scale[2])
GetSimpleRotate (self, rkRotate)
Retrieve rotation data from this 4x4 matrix.
Parameters
- rkRotate[IN] Rotation Matrix - RMatrix3
Returns
- 3x3 matrix rotation data of this 4x4 matrix.
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
1, 1,-1,-2,
1,-1,-1, 2,
1,-2, 1,-1
rotate = RLPy.RMatrix3()
matrix4_value.GetSimpleRotate( rotate )
row0 = rotate.GetRow(0)
print(row0[0])
print(row0[1])
print(row0[2])
SetTranslateZero (self)
Set the translation data in this 4x4 matrix to 0.
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
1, 1,-1,-2,
1,-1,-1, 2,
1,-2, 1,-1
matrix4_value.SetTranslateZero()
row3 = matrix4_value.GetRow(3)
print(row3[0] == 0)
print(row3[1] == 0)
print(row3[2] == 0)
RotationX (self, fAngle)
Rotation matrix for rotations around x-axis。
Parameters
- fAngle[IN] angle in radians - float
Returns
- Return a new matrix of for rotations around x-axis - RMatrix4
matrix4_orgin = RLPy.RMatrix4()
matrix4_orgin.MakeIdentity()
matrix4_orgin.RotationX( 90 * RLPy.RMath.CONST_DEG_TO_RAD )
RotationY (self, fAngle)
Rotation matrix for rotations around y-axis.
Parameters
- fAngle[IN] angle in radians - float
Returns
- Return a new matrix of for rotations around y-axis - RMatrix4
matrix4_orgin = RLPy.RMatrix4()
matrix4_orgin.MakeIdentity()
matrix4_orgin.RotationY( 90 * RLPy.RMath.CONST_DEG_TO_RAD )
RotationZ (self, fAngle)
Rotation matrix for rotations around z-axis.
Parameters
- fAngle[IN] angle in radians - float
Returns
- Return a new matrix of for rotations around z-axis - RMatrix4
matrix4_orgin = RLPy.RMatrix4()
matrix4_orgin.MakeIdentity()
matrix4_orgin.RotationZ( 90 * RLPy.RMath.CONST_DEG_TO_RAD )
RotateAxisAngle (self, rkAxis, fAngle)
Rotation matrix from axis angle.
Parameters
- rkAxis[IN] axis vector - RVector3
- fAngle[IN] angle in radians - float
Returns
- Return a new matrix from specified axis angle - RMatrix4
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
1, 1,-1,-2,
1,-1,-1, 2,
1,-2, 1,-1
x_axis_vector = RLPy.RVector3( 1, 0, 0 ) # axis = "X"
y_axis_vector = RLPy.RVector3( 0, 1, 0 ) # axis = "Y"
z_axis_vector = RLPy.RVector3( 0, 0, 1 ) # axis = "Z"
matrix4_value.RotateAxisAngle( x_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
matrix4_value.RotateAxisAngle( y_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
matrix4_value.RotateAxisAngle( z_axis_vector, 90 * RLPy.RMath.CONST_DEG_TO_RAD )
FromEulerAngle (self, Oreder, rx, ry, rz)
Convert Euler angle to a 4x4 matrix according to a rotation axis order.
Parameters
- Oreder[IN] Euler order - RLPy.Rotation_Orderrx[IN] Angle of x-axis in radians - floatry[IN] Angle of y-axis in radians - floatrz[IN] Angle of z-axis in radians - float
Returns
- Return a new matrix from specified axis angle - RMatrix4
euler_angle_x = 90 * RLPy.RMath.CONST_DEG_TO_RAD
euler_angle_y = 0
euler_angle_z = 0
matrix4_result = RLPy.RMatrix4().FromEulerAngle( RLPy.EEulerOrder_XYZ, euler_angle_x, euler_angle_y, euler_angle_z)
row0 = matrix4_result[0].GetRow(0)
print(row0[0])
print(row0[1])
print(row0[2])
print(row0[3])
SetSR (self, mSR)
Set scale and rotation part of the matrix。
Parameters
- mSR[IN] 3x3 matrix - RMatrix3
Returns
- Return a new 4x4 matrix - RMatrix4
matrix4_orgin = RLPy.RMatrix4()
matrix4_orgin.MakeIdentity()
matrix3_rotate_value = RLPy.RMatrix3( 1, 0, 0,
0, 1, 0,
0, 0, 1 )
matrix4_orgin.SetSR(matrix3_rotate_value)
GetSR (self)
Get scale and rotation part of the matrix。
Returns
- Return a 3x3 matrix - RMatrix3
matrix4_value = RLPy.RMatrix4( 1, 2, 1, 1,
1, 1,-1,-2,
1,-1,-1, 2,
1,-2, 1,-1
result = matrix4_value.GetSR()
row0 = result.GetRow(0)
print(row0[0])
print(row0[1])
print(row0[2])
SetTranslate (self, vTranslate)
Set translate of the matrix。
Parameters
- vTranslate[IN] Translate vector - RVector3
Returns
- Return a new matrix with the specified translation - RMatrix4
matrix4_orgin = RLPy.RMatrix4()
matrix4_orgin.MakeIdentity()
matrix4_orgin.SetTranslate(RLPy.RVector3( 1, 2, 3 ) )
GetTranslate (self)
Get translate of the matrix。
Returns
- Return a translate vector - RVector3
matrix4_orgin = RLPy.RMatrix4()
matrix4_orgin.MakeIdentity()
matrix4_orgin.SetTranslate(RLPy.RVector3( 1, 2, 3 ) )
result = matrix4_orgin.GetTranslate()
print(result[0] == 1)
print(result[1] == 2)
print(result[2] == 3)
AccuScale (self, rkScale)
Accumulate matrix with scale vector。
Parameters
- rkScale[IN] Scale vector - RVector3
Returns
- Return a new matrix (*this) *= Accumulate - RMatrix4
matrix4_orgin = RLPy.RMatrix4()
matrix4_orgin.MakeIdentity()
matrix4_orgin.AccuScale(RLPy.RVector3( 2, 2, 2 ) )
matrix4_orgin.AccuScale(RLPy.RVector3( 3, 3, 3 ) )
result = matrix4_orgin.GetSR()
row0 = result.GetRow(0)
print(row0[0] == 2*3)
row1 = result.GetRow(1)
print(row1[1] == 2*3)
row2 = result.GetRow(2)
print(row2[2] == 2*3)
AccuRotate (self, rkRotate)
Accumulate matrix with rotation matrix。
Parameters
- rkRotate[IN] Rotation matrix - RMatrix3
Returns
- Return a new matrix (*this) *= Accumulate - RMatrix4
matrix4_orgin = RLPy.RMatrix4()
matrix4_orgin.MakeIdentity()
matrix3_orgin = RLPy.RMatrix3()
matrix3_orgin.FromAxisAngle( RLPy.RVector3( 0, 1, 0 ), 90 * RLPy.RMath.CONST_DEG_TO_RAD )
matrix4_orgin.AccuRotate(matrix3_orgin)
matrix4_orgin.AccuRotate(matrix3_orgin)
rotate = RLPy.RMatrix3()
matrix4_orgin.GetSimpleRotate( rotate )
row0 = rotate.GetRow(0)
print(row0[0])
print(row0[1])
print(row0[2])
AccuTranslate (self, rkTranslate)
Accumulate matrix with translate vector。
Parameters
- rkTranslate[IN] Translate vector - RVector3
Returns
- Return a new matrix (*this) *= Accumulate - RMatrix4
matrix4_orgin = RLPy.RMatrix4()
matrix4_orgin.MakeIdentity()
matrix4_orgin.AccuTranslate(RLPy.RVector3( 1, 2, 3 ) )
matrix4_orgin.AccuTranslate(RLPy.RVector3( 2, 2, 2 ) )
row3 = matrix4_orgin.GetRow(3)
print(row3[0] == 1+2)
print(row3[1] == 2+2)
print(row3[2] == 2+3)